

Ref Sen4CAP_DDF-ATBD-L4B_v1.3

Issue Page Date

1.3 1 26/03/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Sen4CAP - Sentinels for Common
Agricultural Policy

Design Definition File
ATBD for L4B grassland mowing detection
product

Milestone Milestone 1

Authors Laura DE VENDICTIS, Cecilia SCIARETTA, Florin TUTUNARU,
Massimo ZAVAGLI, Sophie BONTEMPS

Distribution ESA - Benjamin KOETZ

Ref Sen4CAP_DDF-ATBD-L4B_v1.3

Issue Page Date

1.3 2 26/03/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

This page is intentionally left blank

Ref Sen4CAP_DDF-ATBD-L4B_v1.3

Issue Page Date

1.3 3 26/03/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Table of contents

1. Logical model ... 6

1.1 Overview of the system ... 6

2. L4B system components ... 8

2.1 External interface of the L4B processing system ... 8

2.1.1 Input data and parameters .. 8

2.1.2 Output data and parameters ... 9

2.2 GSAA input shapefile preparation ... 10

2.3 SAR data processing .. 11

2.3.1 SAR feature extraction .. 11

2.3.2 SAR mowing detection ... 13

2.3.3 Pseudo-Code .. 14

2.4 Optical data processing .. 23

2.4.1 Vegetation Indexes feature extraction ... 23

2.4.2 Vegetation Indexes mowing detection .. 24

2.4.3 Pseudo-Code .. 27

2.5 Fusion of detections ... 36

2.5.1 S-1/S-2 mowing detections merge ... 36

2.6 Compliancy assessment ... 36

2.6.1 Compliancy criteria for each country .. 36

2.6.2 Pseudo-code ... 37

Ref Sen4CAP_DDF-ATBD-L4B_v1.3

Issue Page Date

1.3 4 26/03/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

List of figures
Figure 1-1. System architecture ... 7

Figure 2-1. Coherence and σ0 VV and VH time series generation .. 12

Figure 2-2. VIs time series generation .. 24

List of tables
Table 2-1. Input variables to access the input S-1 and S-2 derived products and GSAA input data data 9

Table 2-2. Output of the mowing detection process .. 10

Ref Sen4CAP_DDF-ATBD-L4B_v1.3

Issue Page Date

1.3 5 26/03/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

List of acronyms
Acronym Definition

CFAR Constant false alarm rate

FAPAR Fraction of Absorbed Photosynthetically Active Radiation

FAR False Positive Rate

FID Feature Identifier

GSAA GeoSpatial Aid Application

ITA Italy

LAEA Lambertian Azimuthal equal-area

LAI Leaf Area Index

LPIS Land Parcel Identification System

NDVI Normalized Difference Vegetation Index

SAR Synthetic Aperture Radar

S-1 Sentinel-1

S-2 Sentinel-2

VI Vegetation Index

Ref Sen4CAP_DDF-ATBD-L4B_v1.3

Issue Page Date

1.3 6 26/03/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

1. Logical model
1.1 Overview of the system
The grassland mowing detection product (L4B) is based on the processing of Sentinel 1 (S-1) and
Sentinel-2 (S-2) derived products, which are respectively coherences, calibrated amplitude backscatter
(square root of σ0 (sigma_nought)) and the Normalized Difference Vegetation Index (NDVI). The
algorithm has been developed to enable the use of two othervegetation indicators (VIs) which are
Fraction-Absorbed Photosynthetically Active Radiation (FAPAR) and the Leaf Area Index (LAI) but,
after the experimentation phase of the first year of the project, they have been disabled in the current
version of SEN4CAP system. The processing is performed independently on the Synthetic Aperture
Radar (SAR) and on the multispectral optical data and the results are merged to provide a single output
by fusing the detections through the exploitation of their reliability indicators. Following this approach,
the system architecture is mainly based on two parallel processing chains linked at the final stage through
the “mowing detections fusing” module.

The internal architecture of the system is depicted in Figure 1-1. The elements of such system are:

• S-1 data processing units:
o SAR Feature extraction
o SAR mowing detection

• S-2 data processing units
o VI Feature extraction
o VI mowing detection

• Common processing units
o Fusion of detections and compliancy assessment

The external interface of the L4B processing system (red dashed lines in Figure 1-1) are:

• S-1 derived product data (input amplitudes VV, VH and coherences VV, VH):
o Formats
o Directory structure

• S-2 derived product data (input NDVI. LAI, FAPAR are currently not available):
o Formats
o Directory structure

• Ancillary data (input):
o Formats
o Directory structure

• Result (output):
o Format
o Directory structure

Ref Sen4CAP_DDF-ATBD-L4B_v1.3

Issue Page Date

1.3 7 26/03/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA

94042, USA

Figure 1-1. System architecture

Ref Sen4CAP_DDF-ATBD-L4B_v1.3

Issue Page Date

1.3 8 26/03/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

2. L4B system components
2.1 External interface of the L4B processing system
2.1.1 Input data and parameters

The mowing detection is performed on S-1 and S-2 derived products, respectivelly calibrated amplitude
backscatterer (square root of σ0) and short-term (6 days) coherences for S-1 and vegetation indexes for
S-2 data. This section describes the derived products, ancillary data and source directory structure and
naming conventions as they are currently used:

• S-1 pre-processed data :
o calibrated amplitude backscatterer (square root of σ0) images VV and VH:

 Type: geotiff raster images, float 32bit;
Naming convention:
SEN4CAP_L2A_PRD_Sn_yyyyMMddThhmmss_VyyyyMMddThhmmss_yy
yyMMddThhmmss_PP_RRR_AMP.tif (.nc)
where Sn = site identifier (n=1,2,3,4,5,6), _yyyyMMddThhmmss_ = product
creation timestamp, VyyyyMMddThhmmss_yyyyMMddThhmmss=
V<master acquisition date and time>_<slave acquisition date and time>, PP =
polarization (VV or VH), RRR = relative orbit.

o Short term (6-days) Coherences VV and VH:
 Type: geotiff raster images, float 32bit;
 Naming convention:

SEN4CAP_L2A_PRD_Sn_yyyyMMddThhmmss_VyyyyMMddThhmmss_yy
yyMMddThhmmss_PP_RRR_COHE.tif (.nc)
where Sn = site identifier (n=1,2,3,4,5,6), _yyyyMMddThhmmss_ = product
creation timestamp, VyyyyMMddThhmmss_yyyyMMddThhmmss=
V<master acquisition date and time>_<slave acquisition date and time>, PP =
polarization (VV or VH), RRR = relative orbit.

• S-2 pre-processed data :
o Vegetation Indexes (NDVI (LAI, FAPAR are currently not available)):

 Type: geotiff raster images, integer 32bit;
 Naming convention:

S2AGRI_L3B_<VIType>_A<yyyymmdd>T<hhmmss>_<TileID>.TIF;
where <yyyymmdd> is the 8-digits acquisition date, <hhmmss> is the 6-digit
time, <VIType> = [‘SNDVI’ (‘SFAPARMONO’, ‘SLAIMONO’ are currently
not available)], <TileID> is the 6-digit tile identifier.

o Source directory structure :
 Vegetation Indexes (NDVI (LAI, FAPAR are currently not available)):

<S2DataRoot>/
S2AGRI_L3B_PRD_S2_<YYYYMMDD>T<HHMMSS>_A<yyyymmdd>T
<hhmmss>/TILES/S2AGRI_L3B_A<yyyymmdd>T<hhmmss>_<TileID>/IM
G_DATA/ ; where <yyyymmdd> is the 8-digits acquisition date, <hhmmss>
is the 6-digit acqusition time, <YYYYMMDD> is the 8-digits preprocessing
date, <HHMMSS> is the 6-digit preprocessing time, <VIType> = [‘SNDVI’
(‘SFAPARMONO’, ‘SLAIMONO’ are currently not available)], <TileID> is
the 6-digit tile identifier.

Ref Sen4CAP_DDF-ATBD-L4B_v1.3

Issue Page Date

1.3 9 26/03/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

o Source directory structure for GSAA input data: None

The input variables required to access and read the input S-1 and S-2 derived products and GSAA input
data are depicted in Table 2-1.

Table 2-1. Input variables to access the input S-1 and S-2 derived products and GSAA input data data

Input variable Role Default
value

SARDataRoot String with the root directory of the source directory
structure of the S-1 preprocessed data

NA

S2DataRoot String with the root directory of the source directory
structure of the S-2 preprocessed data

NA

SegmentsFile String with the file name with absolute path of the shape
file. (e.g. /var/scratch/LPIS/LPIS.shp)

NA

seg_parcel_id_attribute String with attribute name corresponding to the parcel IDs. ‘parcel_id’

Once the data are ingested and loaded, the following data structures are generated in memory to be
passed to the following modules SAR data processing and Optical data processing.

2.1.2 Output data and parameters

The output of the mowing detection process is stored in an output shapefile file <outputShapeFile>. This
file must be available at the start of the processing and must have the same structure of the input file
<inputShapeFile>:

[1] NewID: Unique Parcel ID (int)
[2] Ori_hold: Holding ID (string)
[3] Ori_id: Original Parcel ID (string)
[4] Ori_crop: Code of crop type selected as grassland (string)
[5] mow_n: number of the detected mowings events (int in [0,1,2,3,4])
[6] m1_dstart: date and time of the start mowing (string)
[7] m1_dend: date and time of the end mowing (string)
[8] m1_conf: confidence level (float)
[9] m1_mis: satellite mission (string)

[10] m2_dstart: date and time of the start mowing (string)
[11] m2_dend: date and time of the end mowing (string)
[12] m2_conf: confidence level (float)
[13] m2_mis: satellite mission (string)
[14] m3_dstart: date and time of the start mowing (string)
[15] m3_dend: date and time of the end mowing (string)
[16] m3_conf: confidence level (float)
[17] m3_mis: satellite mission (string)
[18] m4_dstart: date and time of the start mowing (string)
[19] m4_dend: date and time of the end mowing (string)
[20] m4_conf: confidence level (float)
[21] m4_mis: satellite mission (string)
[22] compl (int in [0,1,2])

Ref Sen4CAP_DDF-ATBD-L4B_v1.3

Issue Page Date

1.3 10 26/03/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

The same output shapefile file (Table 2-2) is used to store the results of both the S-1 and S-2 based
processing chains and it is updated iteratively at each processing run, in the attributes from [5] to [22].

Table 2-2. Output of the mowing detection process

Output
parameters

Role Default
value

outputShapeFile String with the file name with absolute path of the output shapefile
file. (e.g. /var/scratch/output/output_file.shp)

NA

2.2 GSAA input shapefile preparation

This part of the processing receives as input the standardized declaration dataset with the quality flags
generated through the “LPIS / GSAA Declaration Dataset Preparation component” (Sen4CAP_DDF-
ATBD-LPIS-GSAA_v1.0) to prepare the shapefile that will be used as input data for the grassland
mowing product generation through the corresponding component of the “Sen4CAP system
orchestrator” (Sen4CAP_DDF_v1.0).

Starting from the standardized declaration dataset (name: {country} {year}_DeclSTD_quality_indic),
this component generates a new shapefile layer <inputShapeFile> with the following characteristics:

 Type: shape file;
 Naming convention: None.
 Attributes. The shape file contains the following attributes:

[1] NewID: Unique Parcel ID (int)
[2] Ori_hold: Holding ID (string)
[3] Ori_id: Original Parcel ID (string)
[4] Ori_crop: Code of crop type selected as grassland (string)
[5] Area_meter: Parcel size in hectares (float)
[6] mow_n: number of the detected mowings events (int in [0,1,2,3,4])
[7] m1_dstart: date and time of the start mowing (string)
[8] m1_dend: date and time of the end mowing (string)
[9] m1_conf: confidence level (float)

[10] m1_mis: satellite mission (string)
[11] m2_dstart: date and time of the start mowing (string)
[12] m2_dend: date and time of the end mowing (string)
[13] m2_conf: confidence level (float)
[14] m2_mis: satellite mission (string)
[15] m3_dstart: date and time of the start mowing (string)
[16] m3_dend: date and time of the end mowing (string)
[17] m3_conf: confidence level (float)
[18] m3_mis: satellite mission (string)
[19] m4_dstart: date and time of the start mowing (string)
[20] m4_dend: date and time of the end mowing (string)
[21] m4_conf: confidence level (float)
[22] m4_mis: satellite mission (string)
[23] proc: flag for processed parcel (int 0 or 1)
[24] compl (int in [0,1,2])

Ref Sen4CAP_DDF-ATBD-L4B_v1.3

Issue Page Date

1.3 11 26/03/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Note that attributes from [1] to [5] derive from the standardized declaration dataset (name:
{country} {year}_DeclSTD_quality_indic), while attributes from [3] to [21] are intialized
as zero value (0).

 The LPIS\GSAA shapefile contains the grassland parcels of each country.

2.3 SAR data processing

Methods based on SAR coherences have shown potential for change detection in agriculture practicing,
and the regularity of S-1 data is well suited for such use. In fact, high coherence values are mainly due
to backscattering from the ground and can be linked to mowing and ploughing practices. Similar
approaches, but for the detection of mowing events on grasslands, have been recently developed by
several authors, where it was demonstrated how coherence increases after grasslands mowing. This is
the main principle exploited in the developed technique to detect mowing events. The weekly frequency
of the monitoring is achieved by triggering the processing at each new S-1A or S-1B acquisition. Given
the last acquisition, a temporal stack of amplitude SAR data and the one formed by coherences are
generated and processed. The SAR based detection of the mowing events are combined, through a fusion
process, with the detection results from S-2 derived data as described in Section 2.5.1.

2.3.1 SAR feature extraction

This part of the processing receives as input the SAR σ0 (sigma_nought), the S-1 short-term (6 days)
coherences as well as the LPIS/GSAA shape files. The output of this process is the temporal trends of
the sigma_nought and coherences averaged over the parcels’ areas.

The extraction of the temporal trends is performed only for the last six σ0 and coherences images (VV
and VH polarization):

• σ0 values at the times T0, T-1, T-2, T-3, T-4, T-5;
• coherence values at the intervals T0-T-1, T-1-T-2, … T-5-T-6.

These data do not need to have the same grid, in other words, they are not necessarly stacked. The
images need only to be geocoded. The temporal series of coherneces and amplitudes is built, image per
image, through object-based approach. In particular, based on LPIS or GSAA derived segmentation, the
average of the calibrated amplitude backscatterer (square root of σ0) and of the coherences within each
parcel is calculated (a morphologic erosion of the parcel segments can be applied). At the end of this
process, 4 NxM arrays are generated, where N = number of parcels and M = number of available dates
(6 in our case):

• 2 arrays containing coherences time series (VH and VV) for all parcels;
• 2 arrays containing σ0 time series (VH and VV) for all parcels;

This processing is summarized in Figure 2-1.

Ref Sen4CAP_DDF-ATBD-L4B_v1.3

Issue Page Date

1.3 12 26/03/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Figure 2-1. Coherence and σ0 VV and VH time series generation

To maximise the SAR derived information, polarization VH is considered as well as all ascending and
descending passes (polarization VV just in the experimentation phase). The SAR-based indicators
includee backscatter σ0 temporal profiles and coherence temporal profiles (ascending and descending
orbits for VH polarization) at 20 m spatial sampling.

It is worth mentioning here the process used to calculate the input coeherence in order to give a definition
of the coherence used for the mowing detection. The coherence is calculated in the SAR slant range
geometry and at full resolution, through the spatial ensemble performed in a L=8x2 pixels mowing
window. The resulting ground resolution of the coherence is about 8 pixels x 4.9 meters = 39.2 meters
in ground range and 2 pixels x 23 meters = 46 meters in azimuth. The coherence is finally resampled
and ground projected from the original (radar) sampling and geometry (slant range 2.3 m x az. 14.1 m)
to 20 m x 20 m.

The described processing uses the following modules:

• S-1 Data selection: given the last available σ0 and coherence corresponding respectivelly to the
acquisition times T0 and T0-T-1, the previous data are identified and searched in the data storage
(T-1, T-2, T-3, T-4, T-5 acqusition times for σ0 and T-1-T-2, … T-5-T-6 for cohereneces). In this step,
the footprint of the data and its geometry/projection is retrieved.

• Parcel rasterization: the input LPIS/GSAA shapefile, filtered over the grassland parcels, is
rasterized over the footprint and geometry/projection of the SAR data. This step generates a
segmentation raster on which each segment is burned with the FID (Feature Identifier) value of
the parcel in the LPIS/GSAA shapefile.

• Temporal trends generation: the temporal trends are calculated for all parcels and for each time
as the spatial average over the parcel as identified by the corresponding segment in the
segmentation. The four temporal trends of the avearge SAR indexes are stored in four array
structures (one for index) with size NxM, where N = number of parcels and M = number of
available dates (6 in our case).

Ref Sen4CAP_DDF-ATBD-L4B_v1.3

Issue Page Date

1.3 13 26/03/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

2.3.2 SAR mowing detection

The mowing detection based on SAR data is based on the following principles:

• high grass makes low the measured coherence, because incoherent.
• coherence across a mowing are low because the scene between pre and post mowing is

is changed.
• coherence based on both images after the mowing is expected higher because

corresponding to two scenes with low level of the grass and therefore with a component
of the backscattere coming from the soil which should be more coherent of the grass
leafs.

On the base of these principles, the main mechanism used to detect a mowing is to identify sudden
increasing of the coherences through change detection in the coherence temporal trends.

These assumptions have been validated by statistical analysis performed with S-1 data1. However, there
are different aspects that makes the detectability of a grassland mowing event in some cases difficult.
For instance, rain on the scene and different moisture level between acqsuitions makes coherences
remaining at low values after a mowing event or, on the contrary, the coherence suddenly increases
because one of such conditions ceases and a mowing is detected erroneously.

The change detection is performed independently for each temporal trend of cohereneces of each parcel.

Therefore, for each parcel, the time series are processed to detect a strong increase of the last coherence
(T0-T-1- VH and VV) with respect to the previous coherences (T-1-T-2, …, T-5-T-6). To this aim, a smooth
trend of the previous 5 coherences is calculated by applying a linear fit of these 5 values. This trend is
used to predict the value at the time T-1-T-2, which will be used to assess the change with the last
coherence T0-T-1. The standard deviation (σ) of the residual fitting errors gives information about the
variability of the coherence trend around the fitted line and is used to calculate the threshold. The
detection is finally calculated by applying the following thresholding criterion:

Cohe(t=T0-T-1) > Cohe_fit(t=T-1-T-2) + k σ, where:
o Cohe(t=T0-T-1) is the last coherence,
o Cohe_fit(t=T-1-T-2) is the value of the fitted coherence at the time T-1-T-2
o k(PFA) is calculated to have a constant probability of false alarm PFA (typically below

1x10e-4).

This CFAR criterion assumes that the residual fitting errors are normally distributed.

The processing depends on the following steps:

• Local trend fit: a linear fit of the the previous coherences (T-1-T-2, …, T-5-T-6) is performed in
order to assess i) prediction at the time T-1-T-2, Cohe_fit(t=T-1-T-2) and ii) standard deviation (σ)
of the residual fitting errors.

• CFAR detection: detection of coherence increasing by using as adaptive threshold th = k σ:
Cohe(t=T0-T-1) > Cohe_fit(t=T-1-T-2) + k σ

• Confidence assessment: the difference Cohe(t=T0-T-1) - Cohe_fit(t=T-1-T-2) is related to the
confidence level of the detection.

The detections and the related confidences are stored in two array structures with size NxM, where N =
number of parcels and M = number of available dates (6 in our case).

1 Tamm, T., Zalite, K., Voormansik, K., & Talgre, L. (2016). Relating Sentinel-1 interferometric coherence to
mowing events on grasslands. Remote Sensing, 8(10), 802.

Ref Sen4CAP_DDF-ATBD-L4B_v1.3

Issue Page Date

1.3 14 26/03/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

2.3.3 Pseudo-Code

2.3.3.1 Library Import

standard library
import os, glob

import sys

import re

import configparser

import numpy as np

import dateutil.parser

import pandas as pd

import scipy

import time

import dateutil.parser

import gdal

from osgeo import osr, ogr

gdal.UseExceptions()

ogr.UseExceptions()

osr.UseExceptions()

new routines
import S1_gmd

import fusion

2.3.3.2 Input parameters

processing parameters
options_layer_burning=['ALL_TOUCHED=False'] # option for gdal_rasterize

pfa_fit = 3.0e-7# constant probability of false alarm

fit_smpl_nt = 5 # number of data on which calculate the linear fitting

min_cohe_var = 0.024 # theoretically expected variance of the coherence

no_mowing_after_det = 60 # No mowing are expected before than 60 days

validity_temporal_range_str = ('20190401 00:00:00', '20191031 23:59:59') # temporal
range used for mowing detection

cohe_ENL = 20*5 # number of SAR Equivalent Number of Look

erode_pixels = 0 # number of pixel buffer to remove in morphological erosion

2.3.3.3 Data, Orbits and paths (to be extracted from last preprocessed data)

Input preprocessed SAR data parameters
orbit_list = 015, 088, 161, 059, 139, 037, 110, 008 # example of S1 orbit list for
Netherlands

Ref Sen4CAP_DDF-ATBD-L4B_v1.3

Issue Page Date

1.3 15 26/03/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

orbit_type_list = ASC, ASC, ASC, ASC, DESC, DESC, DESC, DESC # example of list of S1
orbit types for Netherlands

pol_types = VH, VV # list of S1 orbit polarization

data_types = AMP, COHE # list of S1 data types

invalid_data = nan

Files and paths
sarDataRoot = <root directory where input preprocessed SAR data are stored>

outputDir = < output directory where the output shape file is stored>

outputShapeFile = <name of the output shapefile>

segmentsFile = <name of the input shapefile used for segmentation>

Attribute names
seg_parcel_id_attribute = 'parcel_id' # name of the attribute for extracting parcel
id

2.3.3.4 File list generation and parameter extraction

The list of the SAR data file names, coherences and amplitudes sorted for acqsuition date and
time, is extracted from the sarDataRoot directory
 # setting file name parsing tools
 keys = ['file_name', 'satellite', 'master_date', 'master_time', 'slave_date',
'slave_time', 'pol', 'orbit', 'data_type']

 get_par_from_file = re.compile('(SEN4CAP_L2A_PRD_(S[0-9]{1,2})_[0-9]{8}T[0-
9]{6}_V([0-9]{8})T([0-9]{6})_([0-9]{8})T([0-9]{6})_([VH]{2})_([0-9]{3})_([A-
Z]{3,4})'+file_ext+')')

 # file list generation from data dir
 file_list = glob.glob(os.path.join(os.path.join(sarDataRoot,'*'),'*'+file_ext))

 # extract data file names and dates from file list and for specific orbits,
polarization and data type
 par_list = S1_gmd_v2.read_file_list(file_list, get_par_from_file, keys,
[orbit_list,], polType, dataType)

 # verify if there are data for specific orbits
 if len(par_list) == 0:
 print("There are NO data for the specific orbit", orbit_list)
 return 2

 # put filename and data parameters in a pandas df
 df = pd.DataFrame.from_records(par_list, columns=keys).drop_duplicates(keys[0])

 # add the orbit type column
 orbit_type_dict = {orbit: orbit_t for orbit, orbit_t in zip([orbit_list,],
[orbit_type,])}
 df['orbit_type'] = df.apply(lambda x: orbit_type_dict[x['orbit']], axis=1)

2.3.3.5 Extraction of dates and times

Dates and times are extracted from file names, converted in date-time formats and stored in a
list structure
 # date and time conversion from str

Ref Sen4CAP_DDF-ATBD-L4B_v1.3

Issue Page Date

1.3 16 26/03/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

 df['master_date_time'] = pd.to_datetime(df.apply(lambda x:
x['master_date']+'T'+x['master_time'], axis=1), yearfirst=True, dayfirst=False)
 df['slave_date_time'] = pd.to_datetime(df.apply(lambda x:
x['slave_date']+'T'+x['slave_time'], axis=1), yearfirst=True, dayfirst=False)
 df.drop(['master_date', 'master_time', 'slave_date', 'slave_time'], axis=1,
inplace=True)

 # add acq_time1 acq_time_old columns
 df['old_acq_time'] = df.apply(lambda x: min(x['master_date_time'],
x['slave_date_time']), axis=1)
 df['acq_time'] = df.apply(lambda x: max(x['master_date_time'],
x['slave_date_time']), axis=1)

2.3.3.6 Data selection based on dates

The files out of the temporal range of interest are discarded
 # retrieval of the date/time range
 if older_acq_date:
 validity_temporal_range_str = [older_acq_date+"T000000",
new_acq_date+"T235959"]
 else:
 validity_temporal_range_str = [new_acq_date+"T000000",
new_acq_date+"T235959"]

 # conversion from string to datetime type
 validity_temporal_range_str = [dateutil.parser.parse(date_str, yearfirst=True,
dayfirst=False) for date_str in validity_temporal_range_str]
 select_date_interval = [validity_temporal_range_str[0] -
datetime.timedelta(days=S1_time_interval*stat_smpl_n),
validity_temporal_range_str[1]]

 # date selection in the validity date/time range
 valid_date_mask = (df['acq_time'] >= select_date_interval[0]) & (df['acq_time']
<= select_date_interval[1])
 df = df.loc[valid_date_mask]

 # generate lists of files and dates
 data_list = df['file_name'].values

2.3.3.7 Removal of corrupted files

 # remove corrupted files
 data_list = S1_gmd_v2.remove_corrupted_files(list(data_list))

2.3.3.8 Generation of segmentation map from input shapefiles and extent extraction

Extraction of projection of the input shapefile
 # Get projection from shape file
 ogr_data = ogr.Open(segmentsFile)
 Layer = ogr_data.GetLayer(0)
 spatialRef = Layer.GetSpatialRef()
 dst_srs = spatialRef.ExportToWkt()

 # Get shape file extent
 (min_x, max_x, min_y, max_y) = Layer.GetExtent()
 print("shape file extent", (min_x, min_y, max_x, max_y))

 # Some gdalwarp parameters
 resampling = gdal.GRA_Bilinear

Ref Sen4CAP_DDF-ATBD-L4B_v1.3

Issue Page Date

1.3 17 26/03/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

 error_threshold = 0.125 # error threshold --> use same value as in gdalwarp

2.3.3.9 Generation of the GDAL Virtual Raster of the SAR data on the shapefile
projection

 # make vrt of all data without considering extension of the shape file
 print('Make virtual raster of input data (without considering extension of the
shape file)')
 output_vrt_tmp = os.path.join(output_tmp_dir, "data_cube_tmp.vrt")
 images_n = S1_gmd_v2.make_vrt(data_list, dst_srs, output_tmp_dir,
output_vrt_tmp, outputBounds=None,
 srcNodata=invalid_data, resampling=resampling,
error_threshold=error_threshold)

 if images_n > 0:
 vrt_data = gdal.Open(output_vrt_tmp)
 else:
 print('Empty VRT. Does orbit intersect segment layer?')
 return 1

2.3.3.10 Extraction of the gdal virtual raster extent

 # Get virtual raster extension
 geoTr = vrt_data.GetGeoTransform()
 r_min_x = geoTr[0]
 r_max_y = geoTr[3]
 r_max_x = r_min_x + geoTr[1]*vrt_data.RasterXSize
 r_min_y = r_max_y + geoTr[5]*vrt_data.RasterYSize
 r_extent = (r_min_x, r_min_y, r_max_x, r_max_y)
 del vrt_data

 print("virtual raster extent", (r_min_x, r_min_y, r_max_x, r_max_y))

2.3.3.11 Extraction of the intersection between gdal virtual raster extent and shapefile
extent

 # Calculate extent intersection between virtual raster and shape file
 outputBounds = (np.maximum(min_x, r_min_x),
 np.maximum(min_y, r_min_y),
 np.minimum(max_x, r_max_x),
 np.minimum(max_y, r_max_y))

2.3.3.12 Generation of the GDAL Virtual Raster of the SAR data on the shapefile
projection and on the intersection extent

Finally, a new gdal VRT is generated with the extent equal to the intersection between input
shape file and SAR data available
 # make vrt over the intersection extent
 print('Make virtual raster of input data (considering intersection between
extensions of i- the shape file, ii- the virtual raster)')
 output_vrt = os.path.join(output_tmp_dir, "data_cube.vrt")
 images_n = S1_gmd_v2.make_vrt(data_list, dst_srs, output_tmp_dir, output_vrt,
outputBounds=outputBounds,
 srcNodata=invalid_data, resampling=resampling,
error_threshold=error_threshold)
 if images_n > 0:
 vrt_data = gdal.Open(output_vrt)
 else:
 print('Empty VRT. Does orbit intersect segment layer?')

Ref Sen4CAP_DDF-ATBD-L4B_v1.3

Issue Page Date

1.3 18 26/03/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

 return 1

2.3.3.13 Generation of segmentation map from input shapefiles

Input segmentation shapefile is projected on the gdal virtual raster of the SAR data

Output segmentation raster file name building
segmentsOutputDir=os.path.join(outputDir, "segments")

segmentsOutRaster = os.path.join(segmentsOutputDir,
os.path.basename(segmentsFile)[:-4]+'_raster')

make directories
try:

 os.mkdir(segmentsOutputDir)

except(OSError):

 print('directory ',segmentsOutputDir,' exists...moving on')

Generate segmentation raster map from input shapefile. The segmentation shapefile is
rasterized over the raster coheVV_list[0]
burned_pixels, seg_attributes = S1_gmd_v2.layer2mask(segmentsFile, output_vrt,
segmentsOutRaster, layer_type='segments', options=options_layer_burning)

2.3.3.14 Load Data

load segments
 # load segments
 gdal_data = gdal.Open(segmentsOutRaster)
 segments = gdal_data.ReadAsArray()
 segments_geo_transform = gdal_data.GetGeoTransform()
 segments_projection = gdal_data.GetProjection()

2.3.3.15 Morphological erosion of segments

Morphological erosion is applied to the segmentation mask if erode_pixels > 0
 # erode segments

 eroded_segs = np.copy(segments)
 if erode_pixels > 0:
 print('Apply erosion')
 # first step: separate segments
 cross = np.array([[0,1,0],[1,1,1],[0,1,0]])
 min_seg = scipy.ndimage.minimum_filter(segments,footprint=cross)
 max_seg = scipy.ndimage.maximum_filter(segments,footprint=cross)
 segs_borders = (max_seg-min_seg)>0
 eroded_segs[segs_borders] = 0

 # second setp: erode
 if erode_pixels > 1:
 erosion_mask = scipy.ndimage.morphology.binary_erosion(eroded_segs>0,
structure=cross,iterations=(erode_pixels-1))
 eroded_segs = eroded_segs*erosion_mask

Ref Sen4CAP_DDF-ATBD-L4B_v1.3

Issue Page Date

1.3 19 26/03/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

2.3.3.16 Extraction of segment id and their parameters

Extraction of the segments
 # segments
 unique_segments = np.unique(eroded_segs)
 if unique_segments[0] == 0: # 0 label corresponds to not valid segments and it
will be removed
 unique_segments = unique_segments[1:]
 print(unique_segments.shape)
 seg_pixels_num = np.array(ndimage.sum(eroded_segs>0, eroded_segs,
index=unique_segments))

2.3.3.17 Extraction data parameters from gdal virtual raster

 # extract data parameters and dates from file_list in the vrt data
 print('Extract data parameters and dates from file_list in the vrt data')
 par_list = S1_gmd_v2.read_file_list(vrt_data.GetFileList()[1:],
get_par_from_file, keys, [orbit_list,], polType, dataType)

 print('Put data parameters in a pandas structure')

 # put data parameters in a pandas df
 print("fill pandas structure")
 vrt_df = pd.DataFrame.from_records(par_list, columns=keys)

 # add the orbit type column
 orbit_type_dict = {orbit: orbit_type for orbit, orbit_type in
zip([orbit_list,], [orbit_type,])}
 vrt_df['orbit_type'] = vrt_df.apply(lambda x: orbit_type_dict[x['orbit']],
axis=1)

 # date and time conversion from str
 vrt_df['master_date_time'] = pd.to_datetime(vrt_df.apply(lambda x:
x['master_date']+'T'+x['master_time'], axis=1), yearfirst=True, dayfirst=False)
 vrt_df['slave_date_time'] = pd.to_datetime(vrt_df.apply(lambda x:
x['slave_date']+'T'+x['slave_time'], axis=1), yearfirst=True, dayfirst=False)
 vrt_df.drop(['master_date', 'master_time', 'slave_date', 'slave_time'], axis=1,
inplace=True)

 # add acq_time1 old_acq_time
 vrt_df['old_acq_time'] = vrt_df.apply(lambda x: min(x['master_date_time'],
x['slave_date_time']), axis=1)
 vrt_df['acq_time'] = vrt_df.apply(lambda x: max(x['master_date_time'],
x['slave_date_time']), axis=1)
 vrt_df['old_acq_date'] = vrt_df.apply(lambda x: x['old_acq_time'].date(),
axis=1)
 vrt_df['acq_date'] = vrt_df.apply(lambda x: x['acq_time'].date(), axis=1)

2.3.3.18 Feature Extraction based on segmentation

 #selection of the average method
 stat_p = scipy.ndimage.mean

 # Write list of dataframe extracting, for each image in the vrt, the averages
and the counts of amplitudes and coherences within the segments
 list_df = S1_gmd_v2.load_stats(vrt_data, vrt_df, eroded_segs, unique_segments,
seg_attributes, seg_parcel_id_attribute, stat_p, invalid_data)

 # Concatenate all pandas elements in the list
 data_df = pd.concat(list_df, ignore_index=True)

Ref Sen4CAP_DDF-ATBD-L4B_v1.3

Issue Page Date

1.3 20 26/03/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

 # Sort wrt count
 data_df.sort_values(['count'], ascending=[False], inplace=True)

 # Aggregate with respect the same date and same parcel_id by keeping the stats
associated with the highest count
 data_df = data_df.groupby(['acq_date', 'data_type',
seg_parcel_id_attribute]).aggregate('first')

 # Rearrange structure to put dates and data_types as columns
 data_df = pd.pivot_table(data_df, values=['mean','count'],
index=[seg_parcel_id_attribute],
 columns=['orbit', 'pol', 'data_type', 'acq_date'],
dropna=False)

 # Sort with respect the dates (from early to late)
 data_df = data_df.sort_values(by=['acq_date'], axis=1, ascending=True)

2.3.3.19 Extraction of the temporal series

 typical_acq_time = {'asc': locAcqTimeASC, 'desc': locAcqTimeDESC, 'ASC':
locAcqTimeASC, 'DESC': locAcqTimeDESC}
 orbit_type_dict = {orbit: orbit_type for orbit, orbit_type in
zip([orbit_list,], [orbit_type,])}

 parcel = data_df.index.values

 # generate array with temporal series
 ampVV_seg = {}
 ampVH_seg = {}
 coheVV_seg = {}
 coheVH_seg = {}

 orbit_list = {x[1] for x in data_df.columns}
 for o in orbit_list:
 if ('VV' in polType) and ('AMP' in dataType):
 ampVV_seg[o] = data_df.xs(key=('mean', 'VV', 'AMP', o), level=(0,
'pol', 'data_type', 'orbit'), axis=1).values
 dates_str = data_df.xs(key=('mean', 'VV', 'AMP', o), level=(0, 'pol',
'data_type', 'orbit'), axis=1).columns.values
 ampVVDateList =
[datetime.datetime.combine(pd.Timestamp(d).to_pydatetime(),
datetime.time(hour=int(typical_acq_time[orbit_type_dict[o]][:2]),
minute=int(typical_acq_time[orbit_type_dict[o]][3:5]))) for d in dates_str]

 if ('VH' in polType) and ('AMP' in dataType):
 ampVH_seg[o] = data_df.xs(key=('mean', 'VH', 'AMP', o), level=(0,
'pol', 'data_type', 'orbit'), axis=1).values
 dates_str = data_df.xs(key=('mean', 'VH', 'AMP', o), level=(0, 'pol',
'data_type', 'orbit'), axis=1).columns.values
 ampVHDateList =
[datetime.datetime.combine(pd.Timestamp(d).to_pydatetime(),
datetime.time(hour=int(typical_acq_time[orbit_type_dict[o]][:2]),
minute=int(typical_acq_time[orbit_type_dict[o]][3:5]))) for d in dates_str]

 if ('VV' in polType) and ('COHE' in dataType):
 coheVV_seg[o] = data_df.xs(key=('mean', 'VV', 'COHE', o), level=(0,
'pol', 'data_type', 'orbit'), axis=1).values
 dates_str = data_df.xs(key=('mean', 'VV', 'COHE', o), level=(0, 'pol',
'data_type', 'orbit'), axis=1).columns.values
 coheVVDateList2 =
[datetime.datetime.combine(pd.Timestamp(d).to_pydatetime(),

Ref Sen4CAP_DDF-ATBD-L4B_v1.3

Issue Page Date

1.3 21 26/03/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

datetime.time(hour=int(typical_acq_time[orbit_type_dict[o]][:2]),
minute=int(typical_acq_time[orbit_type_dict[o]][3:5]))) for d in dates_str]
 coheVVDateList1 = [d - datetime.timedelta(days=S1_time_interval) for d
in coheVVDateList2]

 if ('VH' in polType) and ('COHE' in dataType):
 coheVH_seg[o] = data_df.xs(key=('mean', 'VH', 'COHE', o), level=(0,
'pol', 'data_type', 'orbit'), axis=1).values
 dates_str = data_df.xs(key=('mean', 'VH', 'COHE', o), level=(0, 'pol',
'data_type', 'orbit'), axis=1).columns.values
 coheVHDateList2 =
[datetime.datetime.combine(pd.Timestamp(d).to_pydatetime(),
datetime.time(hour=int(typical_acq_time[orbit_type_dict[o]][:2]),
minute=int(typical_acq_time[orbit_type_dict[o]][3:5]))) for d in dates_str]
 coheVHDateList1 = [d - datetime.timedelta(days=S1_time_interval) for d
in coheVHDateList2]

 if ('VV' in polType) and ('AMP' in dataType):
 ampVV_seg = ampVV_seg[o]
 if ('VH' in polType) and ('AMP' in dataType):
 ampVH_seg = ampVH_seg[o]
 if ('VV' in polType) and ('COHE' in dataType):
 coheVV_seg = coheVV_seg[o]
 if ('VH' in polType) and ('COHE' in dataType):
 coheVH_seg = coheVH_seg[o]

2.3.3.20 Make dictionary of the segments and its inversion

 # make dictionary segment --> seg_parcel_id_attribute
 seg_attributes = {i: {seg_parcel_id_attribute: p} for i, p in
enumerate(parcel)}

 # inverti dizionari
 inv_seg_dct = {v[seg_parcel_id_attribute]:k for k,v in seg_attributes.items()}

2.3.3.21 Detection: Constant false alarm rate (CFAR) initialization

Calculation of the k_fact depending on the input probability of false alarm parameter pfa
k_fact = np.sqrt(2)*scipy.special.erfinv(1. - 2.*pfa)

2.3.3.22 Detection: fitting and detection on VV temporal trends of the coherences

The input temporal trends, except the last data, are linearly fitted
data_seg_pred, data_seg_std = S1_gmd.temporal_linear_fit(coheVV_seg, coheDateList1,
stat_smpl_n, linear_fit=True) # data_seg_pred is the last value of the fitted line
(at the time T-1-T-2), predicted, data_seg_std is the associated error standard
deviation

Calculate detection and confidences. The CFAR thresholding criterium is applied:
coheVV_seg((t=T0-T-1) > data_seg_pred(t=T-1-T-2) + k_fact data_seg_std,
coheVV_det_cube_fit = S1_gmd.CFAR_detection(coheVV_seg, k_fact, data_seg_pred,
data_seg_std, saturate_sigma_seg=saturate_sigma) # coheVV_det_cube_fit is an array
with shape NxM, where N=number of segments, M=number of times. In the last column
(last time), it contains 0 for the segments in which no mowing are detected or contains
the confidence levels (0<conf<1) if a mowing event is detected.

Ref Sen4CAP_DDF-ATBD-L4B_v1.3

Issue Page Date

1.3 22 26/03/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

2.3.3.23 Detection: fitting and detection on VH temporal trends of the coherences

The input temporal trends, except the last data, are linearly fitted
data_seg_pred, data_seg_std = S1_gmd.temporal_linear_fit(coheVH_seg, coheDateList1,
stat_smpl_n, linear_fit=True) # data_seg_pred is the last value of the fitted line
(at the time T-1-T-2), predicted, data_seg_std is the associated error standard
deviation

Calculate detection and confidences. The CFAR thresholding criterium is applied:
coheVH_seg((t=T0-T-1) > data_seg_pred(t=T-1-T-2) + k_fact data_seg_std,
coheVH_det_cube_fit = S1_gmd.CFAR_detection(coheVH_seg, k_fact, data_seg_pred,
data_seg_std, saturate_sigma_seg=saturate_sigma) # coheVV_det_cube_fit is an array
with shape NxM, where N=number of segments, M=number of times. In the last column
(last time), it contains 0 for the segments in which no mowing are detected or contains
the confidence levels (0<conf<1) if a mowing event is detected

detection on coherences have 1-acquisition delay. Remove this delay
coheVV_det_cube_fit = np.roll(coheVV_det_cube_fit, -1, axis=1)

coheVV_det_cube_fit[:,-1] = 0

2.3.3.24 Normalization of the confidence index for VV and VH detections

Calculate detection reliability index as normalized index. For SAR data, the confidence index is
bounded within (0.0, 0.5)
coheVH_det_cube_fit[coheVH_det_cube_fit>0] =
S1_gmd.norm_fun(coheVH_det_cube_fit[coheVH_det_cube_fit>0], alpha, bounds=(0.0,
0.5))

coheVV_det_cube_fit[coheVV_det_cube_fit>0] =
S1_gmd.norm_fun(coheVV_det_cube_fit[coheVV_det_cube_fit>0], alpha, bounds=(0.0,
0.5))

2.3.3.25 Calculate fused confidences exploiting VV and VH detections

Detection on VV coherences are used to update the confidence indexes of the mowing detections,
which are based on VH coherences
det_cub = np.copy(coheVH_det_cube_fit) # make a copy of the VH detection data
structure

det_cube[det_cube>0] = np.maximum(det_cube[det_cube>0],
coheVV_det_cube_fit[det_cube>0])

2.3.3.26 Write detection shape file results

If outputShapeFile does not exist, it is assumed that the input segmentsFile can be used to derive
geometry and it is cloned on the output directory
if not os.path.exists(outputShapeFile):

 fusion.cloneAndUpdateShapefile(segmentsFile, outputShapeFile)

The new detections are added in the output shape file outputShapeFile
fusion.writeDetections_S1(outputShapeFile, unique_segments, det_cube, coheDateList1,
coheDateList2, mission_id='S1', max_dates=4, minimum_interval_days=30)

Ref Sen4CAP_DDF-ATBD-L4B_v1.3

Issue Page Date

1.3 23 26/03/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

2.3.3.27 Calculate compliancy

Run compliancy calculation (for details see section 2.6)
 fusion.do_compliancy(outputShapeFile, cnt_crop_code, cnt_crop_TR,
cnt_crop_rule)

2.4 Optical data processing

S-2 data series are used to calculate trends of indices related to the biomass (NDVI) and to detect the
sudden decreasing of these trends to identify a mowing event. The S2 detection results are fused with
SAR results as described in the Section 2.5.1

Regarding to the optical data processing, it is worth noting that, depending on the European regional
area and in particular in the Mediterranean areas, decreasing of NDVI could occur due to grass drying
out before and during Summer, but it has a slower dynamic with respect to mowing events. To deal with
these phenomena, during the first year of the project and the experimentation phase, the developed
algorithm exploited an adaptive model of the phenology of the grassland, which is dependent on the
geographical area. The mowing detection is therefore based on the identification of decreasing of VIs
with respect to the expected model of unmowed grassland for that area.

This second approach of mowing detection, after the experimentation phase, has not been enabled in the
current version of SEN4CAP system. The approach is, in any case, described in the following
paragraphs.

2.4.1 Vegetation Indexes feature extraction

Any S-2 NDVI image available in the shapefile footprint at the time T0 are made available, as well as
the associated LAI and FAPAR VIs. The cloud and shadow masks have been already generated and
applied to the available VIs images. Indeed, the VIs images have invalid values in areas covered by
cloud or cloud shadow. The input images span a temporal period ending with the last indexes (at the
time T0) and including all previous ones (at the times T-1, T-2, T-3, …, Tfirst acquisition) from a “first
acquisition” date, where the date of the “first acquisition” depends on the monitoring period defined for
grassland mowing detection. For instance, if the monitoring period is between April and October, the
first April is selected as the first useful acquisition date. The VIs data (just NDVI is available in the
current version of the algorithm) need to be geocoded in order to allow the extraction of the temporal
series of the VI indexes.

As for the SAR based indexs, the geocoded VIs are processed to generate temporal trends of VIs
averaged over parcel segments for all parcels. To this aim, LPIS/GSAA layer is used to identify the
parcells and to derive segmentation raster with the same grid of the VIs data.

At the end of this process, one NxM array is generated for each VI, where N = number of parcels and
M = number of available dates from the start of the monitoring period

This processing is summarized in Figure 2-2.

Ref Sen4CAP_DDF-ATBD-L4B_v1.3

Issue Page Date

1.3 24 26/03/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Figure 2-2. VIs time series generation

The described processing uses the following modules:

• S-2 Data selection: all acquisition times available from the “first acquisition” to the last one, T0,
are identified and searched in the data storage. In this step, the footprint of the data and its
geometry/projection is retrieved.

• Parcel rasterization: the input LPIS/GSAA shapefile, filtered over the grassland parcels, is
rasterized over the footprint and geometry/projection of the Vis data. This step generates a
segmentation raster on which each segment is burned with the FID (Feature Identifier) value of
the parcel in the LPIS/GSAA shapefile.

• Temporal trends generation: the temporal trends are calculated for all parcels and for each time
as the spatial average of the VIs over the parcel as identified by the corresponding segment in
the segmentation. The temporal trends of the avearge VIs are stored in array structures (one for
index) with size NxM, where N = number of parcels and M = number of available dates.

2.4.2 Vegetation Indexes mowing detection

For each parcel, the time series are processed to detect a decrease in the VI value (T0) with respect to
the last sensed VI or respect to a pre-calculated model. Indeed, as aforementioned, two approaches are
considered to build a referement with respect to which the VI decreasing is assessed: i) the use of the
last cloud free sensed VI or ii) the use of a pre-calculated model. Bothy approaches have advantages
and disadvantages here quickly described:

• The use of the last cloud free sensed VI (without pre-calculated model):
o PROS: this approach is simple and very effective in Mediterranean areas where cloud

free acqsuisitios are frequent and even when the grassland phenology is very complex
(more rise and decreasing phases depending on whether conditions)

o CONS: its application on cloudy northen regions prevents the effective detection on the
few cases in which the surface is observed.

• The use of a pre-calculated model:
o PROS: it is effective in cloudy northen regions in which the temporal series is not very

dense due to frequent cloud coverage and where the grassland phenology has a standard
behaviour (one rising phase and one decreasing phase respectivelly at the start and at
the end of the phenology season)

Ref Sen4CAP_DDF-ATBD-L4B_v1.3

Issue Page Date

1.3 25 26/03/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

o CONTRA: in Mediterranean regions, where the grassland phenology can be complex
(more rise and decreasing phases) the model cannot effectively calculated and it is too
much depending on actual whether conditions.

Currently, the grassland mowing detection can be performed using only the default mode, based on the
use of the last cloud free sensed VI (without pre-calculated model).

2.4.2.1 Model calculation (not available in the current version of processor)

The unmowed grassland model is calculated and used only for the regions which have frequent cloud
coverage and in which the grassland phenology has a standard behaviour (one rising phase and one
decreasing phase respectivelly at the start and at the end of the phenology season). Indeed, in cloudy
regions, only few data per year are generally usable, this is the reason why a model characterizing the
VI trend of unmowed grassland is necessary in order to have an reasonable level of detectability of the
mowing events. To this aim, if enabled, a model of the unmowed grassland is built based on the
assumption that in large areas and in temporal interval of few days (less than 1 week), the mowing is
never performed simultaneously in more than 90% parcels in the territory.

The model generation depends on the following modules:

• VI model estimation: This module is run only at the first execution and requires the availability
of VIs for one or more previous years.

The VI model estimation takes into consideration regional criterium and VI temporal trends of
the previous years. It takes three sequential steps.

Step 1: For each S2 granule (regional criterium), over all grassland parcels and at each available
time t of the previous year, the following parameters are evaluated:

− nt: number of samples VIs at the time t;
− p95, t: 95th percentile of the VIs at the time t;
− mt: mean of the VIs the time t;
− σt: standard deviation of the VIs the time t.

If more than one year of VIs are available in the past, the extraction of the parameters is
independently performed for each year. Therefore, for the same S2 granule, a set of temporal
series of {nt}t ∈ Yi, {p95, t}t ∈ Yi,{mt}t ∈ Yi and {σt}t ∈ Yi: is retrieved for each past year Yi , i ∈ {-1,
-2, …}.

Step 2: The temporal series of {nt}t ∈ Yi, {p95, t}t ∈ Yi,{mt}t ∈ Yi and {σt}t ∈ Yi retrieved for each past
year are merged in one set of temporal series of {nt}t ∈ Y, {p95, t}t ∈ Y,{mt}t ∈ Y and {σt}t ∈ Y, where
Y=∪i Yi, representing the temporal behaviour characterizing statistically one year. The temporal
series will contain all t’s from all considered past years without repetitions. The repetitions are
avoided, by retrieving a unique set of of nti, p95, t, mt and σt from the same times in different years
(e.g. nt1, p95, t1, mt2, nt2, p95, t2, mt2 , …) using the following formulas:

− nt = nt1 + nt2 + nt1 + …;
− p95, t: ∑(nti /nt) p95, ti;
− mt: ∑(nti /nt) mti;
− σt: sqrt(pooled_variance(nt1, p95, t1, mt2, nt2, p95, t2, mt2 , …)).

The number of samples {nt}t ∈ Y at each time is used to assess the reliability of the corresponding
estimated 95th percentiles. Therefore, times t’s having a small number of samples are discarded.

The remaining statistically significative times t’s give the final temporal series of {p95, t}t ∈ Y,
and {σt}t ∈ Y, where Y⊂Y is the collection of statistically significative times t’s.

Ref Sen4CAP_DDF-ATBD-L4B_v1.3

Issue Page Date

1.3 26 26/03/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Step 3: The temporal series of {p95, t}t ∈ Y is finally used to estimate the parameters of the double-
logistic function fitting such series. The double-logistic function
(https://explorer.earthengine.google.com/#detail/LANDSAT%2FLC8_L1T_8DAY_NDVI)
has the following form and is characterized by 6 parameters (VIW, VIM, ms, ma, tS, tA):

 𝑉𝑉𝑉𝑉(𝑡𝑡) = 𝑉𝑉𝑉𝑉𝑊𝑊 + (𝑉𝑉𝑉𝑉𝑀𝑀 − 𝑉𝑉𝑉𝑉𝑊𝑊) (
1

1 + exp [−𝑚𝑚𝑆𝑆(𝑡𝑡 − 𝑡𝑡𝑆𝑆)]

+
1

1 + exp[𝑚𝑚𝐴𝐴(𝑡𝑡 − 𝑡𝑡𝐴𝐴)] − 1)
(2.1)

where 𝑉𝑉𝑉𝑉(𝑡𝑡) is the retrieved p95, t, 𝑉𝑉𝑉𝑉𝑊𝑊 is the winter (minimum) value, 𝑉𝑉𝑉𝑉𝑀𝑀 is the maximum VI
value, 𝑡𝑡𝑆𝑆 is the increasing inflection point (also referred to as spring date), 𝑡𝑡𝐴𝐴 is the decreasing
inflection point (also referred to as autumn date), 𝑚𝑚𝑆𝑆 is the rate of increase at 𝑡𝑡𝑆𝑆 inflection point
and 𝑚𝑚𝐴𝐴 is the rate of decrease at the descending inflection point. The application of the double-
logistic model relies on the assumption that the grassland phenology is simply given by one
rising phase and one decreasing phase respectivelly at the start and at the end of the phenology
season. If this assumption fails, the resulting model cannot be representative of the actual grass
phenology.

The resulting double-logistic function is the model used to perform the detections togheter the
standard deviations {σt}t ∈ Y which are used to assess the reliability of the model at each time.

• Model adjustment: At each new detected VI(t) the model is updated, by rescaling it, following
these rules:

− For each parcel, only at the first valid VI (first cloud free parcel VI), the model is
rescaled, by applying a rescaling factor f, such that at the first valid VI the rescaled
model passes exactly through the VI value: model=model(t; p, f)

− If VI(t) >model(t; p, ft-1): the model is rescaled, with a new f=ft, in order to force
VI(t)=model(t; p, ft).

− If a grassland mowing has been detected at the time t-1 (VI(t-1)< model(t-1; p, ft-1)-kσt-

1, see below detection module, the model is rescaled with a new f=ft in order to force
VI(t)=model(t; p, ft).

2.4.2.2 Grassland mowing detection

The detection step of the algorithm depends slightly if the pre-calculated model is used or not.

If the model is used, the mowing is detected applying a threshold on the decreasing of the current VI
with respect to the precalculated model of the unmowed grassland. These are the steps of the algorithm:

• Detection: A new grassland mowing is deteceted applying this thresholding criterion:
o VI(t) < model(t; p, ft-1) – k σt, where:

 VI(t) is the last VI value
 model(t; p, ft-1) is the value of the VI model at the time t for the parcel p
 k is a constant factor
 σt is the reliability of the model at the time t extracted from {σt}t ∈ Y

• Confidence assessment: the difference model(t; p, ft-1) - VI(t) is related to the confidence level
of the detection.

https://explorer.earthengine.google.com/#detail/LANDSAT%2FLC8_L1T_8DAY_NDVI

Ref Sen4CAP_DDF-ATBD-L4B_v1.3

Issue Page Date

1.3 27 26/03/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

If the model of the unmowed grassland is not used, the mowing is detected applying a threshold on the
decreasing of the current VI with respect to the last cloud-free sensed VI. These are the steps of the
algorithm:

• Detection: A new grassland mowing is deteceted applying the AND of these two thresholding
criteria:

o VI(t) < VI(tcf) – thVI, where:
 VI(t) is the current VI value
 VI(tcf) is the last cloud-free sensed VI
 thVI is the threshold used for the index VI

o VI(tcf) - VI(t) > Rdec Ndays, where:
 VI(t) is the current VI value
 VI(tcf) is the last cloud-free sensed VI
 Ndays is the number of days between t and tcf
 Rdec is the minimum allowed decreasing rate. Decreasing rates lower Rdec are

assumed to be decreasing of the VI due to natural phenology of the grassland.
• Confidence assessment: the difference VI(tcf) - VI(t) – thVI is related to the confidence level of

the detection.

2.4.3 Pseudo-Code

2.4.3.1 Library Import

standard Python library
import os, glob

import sys

import re

import configparser

import ast

import numpy as np

import dateutil.parser

import datetime

import shutil

from datetime import date

import scipy

import time

import gdal

from osgeo import osr, ogr

gdal.UseExceptions()

ogr.UseExceptions()

osr.UseExceptions()

import scipy.ndimage as ndimage

from scipy.signal import argrelextrema

Ref Sen4CAP_DDF-ATBD-L4B_v1.3

Issue Page Date

1.3 28 26/03/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

new routines
import S2_gmd

import fusion

import model_lib

2.4.3.2 Tiles to be processed

 tile_list = [T31UES, T31UET, T31UEU, T31UFS, T31UFT, T31UFU, T31UFV, T31UGS,
T31UGT, T31UGU, T31UGV, T32ULB, T32ULC, T32ULD, T32ULE] # S2 tiles ids covering the
area of interest of Netherlands

2.4.3.3 Input Parameters

processing parameters
prod_type_list = _SNDVI_ # NDVI

invalid_val = -10000 # NDVI invalid value

sc_fact = 1000 # NDVI scaling factor

corrupted_th = 0.1 # NDVI below this value are considered not exploitable (bare soil,
ploughing, …)

stat_smpl_n = 0 # number of images to calculate statistics

no_mowing_after_det = 60 # No mowing are expected before than 60 days

model_temporal_range_str = ('20180101 00:00:00', '20181231 23:59:59') # temporal
range for the generation of the model (previous year wrt the current year of mowing
detection)

process_temporal_range_str = ('20190401 00:00:00', '20191031 23:59:59') # temporal
range for the detection

options_layer_burning = [‘ALL_TOUCHED’] # touch option for GDAL

erode_pixels = 0 # pixel buffer to remove with morphological erosion

detection parameters, depending on the area/country
decreasing_abs_th = 0.05

2.4.3.4 Data and paths

S2DataRoot = <root directory where S2 derived data are stored>

segmentsFile = <name of the input shapefile used for segmentation>

outputShapeFile = <name of the output shapefile>

outputDir = <root directory where input preprocessed S2 data are stored>

2.4.3.5 File list generation and parameter extraction

generate list of file name to load for tile
 # setting file name parsing tools
 keys = ['file_name', 'data_type', 'acq_date', 'acq_time', 'tile_code']
 get_par_from_file = re.compile('(S2AGRI_L3B_([A-Z]{5,11})_A([0-9]{8})T([0-
9]{6})_(T[0-9]{2}[A-Z]{3}).TIF)')

 # file list generation from data dir

Ref Sen4CAP_DDF-ATBD-L4B_v1.3

Issue Page Date

1.3 29 26/03/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

 file_list =
glob.glob(os.path.join(os.path.join(S2DataRoot,'*/*/*/*/'),'S2AGRI_*.TIF'))
 print(os.path.join(os.path.join(S2DataRoot,'*/*/*/*/'),'S2AGRI_*.TIF'))

 # extract data file names and dates from file list and for specific orbits
 par_list = S1_gmd_v2.read_file_list(file_list, get_par_from_file, keys,
tile_number, orbit_field_label='tile_code')

 # verify if there are data for specific tile
 if len(par_list) == 0:
 return 2

 # put filename and data parameters in a pandas df
 print("fill pandas structure")
 df = pd.DataFrame.from_records(par_list, columns=keys).drop_duplicates(keys[0])

 # date and time conversion from str
 df['acq_date_time'] = pd.to_datetime(df.apply(lambda x:
x['acq_date']+'T'+x['acq_time'], axis=1), yearfirst=True, dayfirst=False)

2.4.3.6 Data selection based on dates and vegetation indexes

 # remove all vegetation indexes not required
 valid_prod_type_mask = False
 for pt in prod_type_list:
 valid_prod_type_mask = np.logical_or(valid_prod_type_mask, df['data_type']
== pt)
 df = df.loc[valid_prod_type_mask]

 # retrieval of the validity date/time range
 if older_acq_date:
 validity_temporal_range_str = [older_acq_date+"T000000",
new_acq_date+"T235959"]
 else:
 validity_temporal_range_str = [new_acq_date+"T000000",
new_acq_date+"T235959"]

 validity_temporal_range_str = [dateutil.parser.parse(date_str, yearfirst=True,
dayfirst=False) for date_str in validity_temporal_range_str]
 select_date_interval = [validity_temporal_range_str[0] -
datetime.timedelta(days=S2_time_interval*stat_smpl_n),
validity_temporal_range_str[1]]

 # File selection based on dates#
 valid_date_mask = (df['acq_date_time'] >= select_date_interval[0]) &
(df['acq_date_time'] <= select_date_interval[1])
 print(np.sum(valid_date_mask))
 df = df.loc[valid_date_mask]

 # generate lists of files and dates
 data_list = df['file_name'].values

2.4.3.7 Removal of corrupted files

 # remove corrupted files
 data_list = S1_gmd_v2.remove_corrupted_files(list(data_list))

2.4.3.8 Generation of segmentation map from input shapefiles and extent extraction

Extraction of projection of the input shapefile

Ref Sen4CAP_DDF-ATBD-L4B_v1.3

Issue Page Date

1.3 30 26/03/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

 # Get projection from shape file
 ogr_data = ogr.Open(segmentsFile)
 Layer = ogr_data.GetLayer(0)
 spatialRef = Layer.GetSpatialRef()
 dst_srs = spatialRef.ExportToWkt()

 # Get shape file extent
 (min_x, max_x, min_y, max_y) = Layer.GetExtent()
 print("shape file extent", (min_x, min_y, max_x, max_y))

 # Some gdalwarp parameters
 resampling = gdal.GRA_Bilinear
 error_threshold = 0.125 # error threshold --> use same value as in gdalwarp

2.4.3.9 Generation of the GDAL Virtual Raster of the SAR data on the shapefile
projection

 # make vrt of all data without considering extension of the shape file
 print('Make virtual raster of input data (without considering extension of the
shape file)')
 output_vrt_tmp = os.path.join(output_tmp_dir, "data_cube_tmp.vrt")
 images_n = S1_gmd_v2.make_vrt(data_list, dst_srs, output_tmp_dir,
output_vrt_tmp, outputBounds=None,
 srcNodata=invalid_data, resampling=resampling,
error_threshold=error_threshold)

 if images_n > 0:
 vrt_data = gdal.Open(output_vrt_tmp)
 else:
 print('Empty VRT. Does tile intersect segment layer?')
 #return 1

2.4.3.10 Extraction of the gdal virtual raster extent

 # Get virtual raster extension
 geoTr = vrt_data.GetGeoTransform()
 r_min_x = geoTr[0]
 r_max_y = geoTr[3]
 r_max_x = r_min_x + geoTr[1]*vrt_data.RasterXSize
 r_min_y = r_max_y + geoTr[5]*vrt_data.RasterYSize
 r_extent = (r_min_x, r_min_y, r_max_x, r_max_y)
 del vrt_data

2.4.3.11 Extraction of the intersection between gdal virtual raster extent and shapefile
extent

 # Calculate extent intersection between virtual raster and shape file
 outputBounds = (np.maximum(min_x, r_min_x),
 np.maximum(min_y, r_min_y),
 np.minimum(max_x, r_max_x),
 np.minimum(max_y, r_max_y))

2.4.3.12 Generation of the GDAL Virtual Raster of the SAR data on the shapefile
projection and on the intersection extent

Finally a new gdal VRT is generated with the extent equal to the intersection between input
shape file and S2 data available
 # make vrt over the intersection extent

Ref Sen4CAP_DDF-ATBD-L4B_v1.3

Issue Page Date

1.3 31 26/03/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

 print('Make virtual raster of input data (considering intersection between
extensions of i- the shape file, ii- the virtual raster)')
 output_vrt = os.path.join(output_tmp_dir, "data_cube.vrt")
 images_n = S1_gmd_v2.make_vrt(data_list, dst_srs, output_tmp_dir, output_vrt,
outputBounds=outputBounds,
 srcNodata=invalid_data, resampling=resampling,
error_threshold=error_threshold)
 if images_n > 0:
 vrt_data = gdal.Open(output_vrt)
 else:
 print('Empty VRT. Does tile intersect segment layer?')
 #return 1

2.4.3.13 Generation of raster ROI mask and segmentation map from input shapefiles

Input segmentation shapefile is projected on the S2 data projection and cropped

Output segmentation raster file name building
segmentsOutputDir=os.path.join(outputDir, "segments")

segmentsOutRaster = os.path.join(segmentsOutputDir,
os.path.basename(segmentsFile)[:-4]+'_raster')

make directories
try:

 os.mkdir(segmentsOutputDir)

except(OSError):

 print('directory ',segmentsOutputDir,' exists...moving on')

Generate segmentation raster map from input shapefile. The segmentation shapefile is
rasterized over the raster imageNDVI_list[0] and write result on file
burned_pixels, seg_attributes = S1_gmd_v2.layer2mask(segmentsFile, output_vrt,
segmentsOutRaster, layer_type='segments', options=options_layer_burning)

2.4.3.14 Load data

 # load segments and truths
 gdal_data = gdal.Open(segmentsOutRaster)
 segments = gdal_data.ReadAsArray()
 segments_geo_transform = gdal_data.GetGeoTransform()
 segments_projection = gdal_data.GetProjection()

2.4.3.15 Morphological erosion of segments

Morphological erosion is applied to the segmentation mask if erode_pixels > 0
 eroded_segs = np.copy(segments)
 if erode_pixels > 0:
 print('Apply erosion')
 # first step: separate segments
 cross = np.array([[0,1,0],[1,1,1],[0,1,0]])
 min_seg = scipy.ndimage.minimum_filter(segments,footprint=cross)
 max_seg = scipy.ndimage.maximum_filter(segments,footprint=cross)
 segs_borders = (max_seg-min_seg)>0
 eroded_segs[segs_borders] = 0

Ref Sen4CAP_DDF-ATBD-L4B_v1.3

Issue Page Date

1.3 32 26/03/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

 # second setp: erode
 if erode_pixels > 1:
 erosion_mask = scipy.ndimage.morphology.binary_erosion(eroded_segs>0,
structure=cross,iterations=(erode_pixels-1))
 eroded_segs = eroded_segs*erosion_mask

2.4.3.16 Extraction of segment id and their parameters

Extraction of the segments
unique_segments = np.unique(eroded_segs)

if unique_segments[0] == 0:

 # 0 label corresponds to not valid segments and it will be removed

 unique_segments = unique_segments[1:]

calculate pixels within segments
seg_pixels_num = np.array(scipy.ndimage.sum(eroded_segs>0, eroded_segs,
index=unique_segments))# calculate center of the segments

2.4.3.17 Extraction data parameters from gdal virtual raster

 # extract data parameters and dates from file_list in the vrt data
 par_list = S1_gmd_v2.read_file_list(vrt_data.GetFileList()[1:],
get_par_from_file, keys, tile_number, orbit_field_label='tile_code')

 # put filename and data parameters in a pandas df
 vrt_df = pd.DataFrame.from_records(par_list, columns=keys)

 # date and time conversion from str
 vrt_df['acq_date_time'] = pd.to_datetime(vrt_df.apply(lambda x:
x['acq_date']+'T'+x['acq_time'], axis=1), yearfirst=True, dayfirst=False)

2.4.3.18 Feature Extraction based on segmentation

selection of the average method
 #selection of the average method
 stat_p = scipy.ndimage.mean

 # Write list of df
 list_df = S1_gmd_v2.load_stats(vrt_data, vrt_df, eroded_segs, unique_segments,
seg_attributes, seg_parcel_id_attribute, stat_p, invalid_data)

 # Concatenate all pandas elements in the list
 data_df = pd.concat(list_df, ignore_index=True)

 # Sort wrt count
 data_df.sort_values(['count'], ascending=[False], inplace=True)

 # Aggregate with respect the same date and same parcel_id by keeping the stats
associated with the highest count
data_df = data_df.loc[data_df.groupby(['acq_date', 'data_type',
seg_parcel_id_attribute])['count'].aggregate('idxmax')]
 data_df = data_df.groupby(['acq_date', 'data_type',
seg_parcel_id_attribute]).aggregate('first')

 # Rearrange structure to put dates and data_types as columns
 data_df = pd.pivot_table(data_df, values=['mean','count'],
index=[seg_parcel_id_attribute],

Ref Sen4CAP_DDF-ATBD-L4B_v1.3

Issue Page Date

1.3 33 26/03/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

 columns=['data_type', 'acq_date'], dropna=False)

 # Sort with respect the dates (from early to late)
 data_df = data_df.sort_values(['acq_date'], axis=1, ascending=True)

2.4.3.19 Extraction of the temporal series

Extraction of temporal series from pandas

 parcel = data_df.index.values

 # generate array with temporal series
 VI_seg = []
 for pt, sf, ct in zip(prod_type_list, sc_fact, corrupted_th):
 VI_data = data_df.xs(key=('mean', pt), level=(0, 'data_type'),
axis=1).values
 dates_str = data_df.xs(key=('mean', pt), level=(0, 'data_type'),
axis=1).columns.values
 print(dates_str)
 VIDateList = [dateutil.parser.parse(d, yearfirst=True, dayfirst=False) for
d in dates_str]
 VI_seg.append({'data_type': pt, 'date_list': VIDateList, 'VI': VI_data,
'sc_fact': sf, 'corrupted_th': ct})

 # apply scale factors and remove corrupted VI
 for d in VI_seg:
 d['VI'] /= d['sc_fact']
 d['VI'][d['VI'] < d['corrupted_th']] = np.nan

 # Final temporal serie
 NDVI_seg = np.array(VI_seg[0]['VI'])
 NDVIDateList = VI_seg[0]['date_list']

2.4.3.20 Make dictionary of the segments and its inversion

 # make dictionary segment --> seg_parcel_id_attribute
 seg_attributes = {i: {seg_parcel_id_attribute: p} for i, p in
enumerate(parcel)}

 # inverti dizionari
 inv_seg_dct = {v[seg_parcel_id_attribute]:k for k,v in seg_attributes.items()}

2.4.3.21 Model extraction

Extraction of the model based on data from previous years
 # definition of the models
 NDVI_nomow_model = np.nanpercentile(NDVI_seg, NDVI_nomow_model_perc, axis=0).T
 NDVI_mean = np.nanmean(NDVI_seg, axis=0).T
 NDVI_std = np.nanstd(NDVI_seg, axis=0).T
 parcel_n = np.sum(NDVI_seg>0, axis=0).T # number of parcels

 # valid indexes
 val_ind = np.where(np.logical_and(NDVI_nomow_model > min_val_VI, (parcel_n >
p_n_th)))[0]

 # raw model
 x = doy[val_ind]
 y = NDVI_nomow_model[val_ind]
 n = parcel_n[val_ind]

Ref Sen4CAP_DDF-ATBD-L4B_v1.3

Issue Page Date

1.3 34 26/03/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

 # double_logistic fit: parameters
 # The starting point to initialize the constrained minimization and the
constrains are set
 # start_params = [double_logistic pedestal (min), amplitude, rise speed, rise
inflection time, fall speed, fall inflection time]
 # bound = ([lower bound list],[upper bound list])

 start_params = [y.min(), y.max()-y.min()] + list(start_params)
 bounds = ([0., 0.] + list(bounds[0]), [np.inf, np.inf] + list(bounds[1]))

 # model fitting
 res = pheno_func.constrained_fit_phenology_model(
 x, y, pheno_model = "dbl_logistic", params=start_params,
bounds=bounds)

 dbl_log_params_fit = res.x
 res_cost = res.cost
 res_opt = res.optimality
 message = res.message

 # double_logistic interpolation on dense regular grid
 x_mod = np.linspace(1., 366, num=int(366/sampling_days))
 model_dbl_l = pheno_func.get_model(x_mod, None, params=dbl_log_params_fit,
pheno_model = "dbl_logistic")

2.4.3.22 Initialization

Allignement of model x's to the current year
 # Fit of the model to the available DOYs
 x = model_dict['SNDVI'][:,0]
 model_dbl_l = model_dict['SNDVI'][:,1]

 # final no-mowing model
 NDVI_nomow_model_ = np.interp([d.timetuple().tm_yday for d in NDVIDateList], x,
model_dbl_l)

 # Adapt/initialize no-mowing model to each parcel
 print("Adapt/initialize no-mowing model to each parcel")
 NDVI_nomow_model = np.zeros_like(NDVI_seg)
 for i in range(len(NDVI_seg)):
 indx = np.where(np.isfinite(NDVI_seg[i,:]))[0]
 if np.size(indx) > 0:
 indx = indx[0]
 NDVI_nomow_model[i,:] =
NDVI_nomow_model_*(NDVI_seg[i,indx]/NDVI_nomow_model_[indx])

2.4.3.23 Detection

The detection is driven by the parameter apply_model. If apply_model = True, for the detection is used
the model of the unmowing grassland, otherwise the detection is performed considering the VI
decreasing with respect to the last cloud-free VI.

Perform the mowing detection

If apply_model == True:

 # Detection on model
 NDVI_det_cube = np.zeros_like(NDVI_seg)
 for t in np.arange(1, NDVI_det_cube.shape[1]):

Ref Sen4CAP_DDF-ATBD-L4B_v1.3

Issue Page Date

1.3 35 26/03/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

 # detection at t
 NDVI_det_cube[:,t] = np.maximum((NDVI_nomow_model[:,t] - NDVI_seg[:,t] -
decreasing_abs_th)/NDVI_nomow_model[:,t-1], 0) # C1: decremento assoluto wrt model
 # only for the parcel with detected mowing or with an increasing of the VI,
the model is updated
 to_update_parc = list(np.where(NDVI_det_cube[:,t] > 0)[0])
 increased_NDVI = list(np.where(diff_seg[:,t] > 0)[0])
 to_update_parc = np.array(to_update_parc + increased_NDVI)
 if len(to_update_parc) > 0:
 NDVI_nomow_model[to_update_parc, t:] *= (NDVI_seg[to_update_parc,
t]/NDVI_nomow_model[to_update_parc, t])[:,None]

 det_cube = NDVI_det_cube
 det_cube[np.isnan(det_cube)] = 0

If apply_model != True:

 for t in range(NDVI_det_cube.shape[1]):

 # Detection at t
 # Detection of a mowing if the decreasing angle (alpha =
atan(delta_VI/delta_doy)) is enough small, that is lower than decreasing_rate_th.
(VI decreasing enough fast.)

 NDVI_det_cube[:,t] = np.maximum((NDVI_last - NDVI_seg[:,t] -
decreasing_abs_th)/NDVI_last, 0) # VI decreasing is at least
decreasing_abs_th
 NDVI_det_cube[:,t] *= ((NDVI_seg[:,t] - NDVI_last) / (DOYList[t] -
NDVI_last_doy) < decreasing_rate_th) # detection only if the decreasing is enough
fast

 # update always NDVI_last and NDVI_doy and NDVI_last_hist

 if t == 0:
 NDVI_last_hist[:,t] = NDVI_last
 elif t > 0:
 NDVI_last_hist[:,t] = NDVI_last_hist[:,t-1]
 valid_vi_indexes = list(np.where(np.isfinite(NDVI_seg[:,t]))[0])
 if len(valid_vi_indexes) > 0:
 NDVI_last[valid_vi_indexes] = NDVI_seg[valid_vi_indexes,t]
 NDVI_last_doy[valid_vi_indexes] = DOYList[t]
 NDVI_last_hist[valid_vi_indexes, t] = NDVI_seg[valid_vi_indexes,t]

2.4.3.24 Remove multiple detections

Remove multiple detections based on "first ones win" and get maximum confidences
 for i in np.arange(1,det_cube.shape[1]):
 print("iter : ", i)
 first_indx = max(np.searchsorted(NDVIDateList, NDVIDateList[i] -
datetime.timedelta(days=no_mowing_after_det)),0)
 det_mow_indx = np.where(det_cube[:, i]>0)[0]
 print("det_mow_indx", det_mow_indx)
 print(np.size(det_mow_indx))
 if np.size(det_mow_indx) > 0:
 print(first_indx, i)
 prev_det_indx = np.where(np.max(det_cube[det_mow_indx, first_indx:i],
axis=1)>0)[0]
 print("prev_det_indx", prev_det_indx)
 if np.size(prev_det_indx) > 0:
 print("det_mow_indx[prev_det_indx]", det_mow_indx[prev_det_indx])
 det_cube[det_mow_indx[prev_det_indx], i] = 0

Ref Sen4CAP_DDF-ATBD-L4B_v1.3

Issue Page Date

1.3 36 26/03/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

2.4.3.25 Confidence normalization

The S2 detection confidence are normalized in the range (0.5, 1.0)
alpha = 1.0

det_cube[det_cube>0] = S2_gmd.norm_fun(det_cube[det_cube>0], alpha,
bounds=(0.5,1.0))

2.4.3.26 Write detection shape file results

If outputShapeFile does not exist, it is assumed that the input segmentsFile can be used to derive
geometry and it is cloned on the output directory
if not os.path.exists(outputShapeFile):

 fusion.cloneAndUpdateShapefile(segmentsFile, outputShapeFile)

The new detections are added in the output shape file outputShapeFile
fusion.writeDetections_S2(outputShapeFile, unique_segments, det_cube, NDVIDateList,
np.isfinite(NDVI_seg), "S2", minimum_interval_days=30)

2.4.3.27 Calculate compliancy

Run compliancy calculation (for details see section 2.6)
 fusion.do_compliancy(outputShapeFile, cnt_crop_code, cnt_crop_TR,
cnt_crop_rule)

2.5 Fusion of detections

2.5.1 S-1/S-2 mowing detections merge

For each new S-1 or S-2 (related VI) image, a new detection processing is performed and the results are
fused with the previous ones, according to the following methodology:

• By default, give to S2 a confidence level (within (0.5, 1)) always higher than S1 (0, 0.5);
• For each parcel, a new detection is included if:

o its confidence is in the top 4 most confidence detections and;
o it has a temporal distance higher than n days with respect to the most confident

detections.

For the pseudo-code, refer to 2.3.3.25.

2.6 Compliancy assessment

2.6.1 Compliancy criteria for each country

The compliancy of the mowing events detected is assessed taking in account the national regulations
provided by the Paying Agencies. Depending on regulations, compliancy assumes a value from 0 to 2
or from 0 to 3:

• "0": Not assessed (if proc attribute of the <OutputShapeFile> =0)
• "1": Assessed and compliant because a mowing occurred in the reference period
• "2": Assessed and not compliant because no mowing occurred in the reference period

Ref Sen4CAP_DDF-ATBD-L4B_v1.3

Issue Page Date

1.3 37 26/03/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

2.6.2 Pseudo-code

2.6.2.1 Library Import

standard library
import os

import sys

import numpy

import datetime

import time

2.6.2.2 Parameters

each country (e.g. Czech Republic (cz), Italy (it), Lithuania (lt), Netherlands (nl), Romania (ro)
and Spain (sp)), France (fr) has different crop types
cnt=[cz, it, lt, nl, ro, sp]

cnt_crop_id_dict = [“crop_code_1”: 0, “crop_code_2”: 1, ..., “crop_code_n”=n-1]

each country has, for each crop type, own temporal ranges as mandatory mowing period

List of tuples. Each 2-elements tuple contain start and end dates of the mandatory mowing
period for each crop type
cnt_time_range =

[(datetime.datetime.strptime('dd/mm/yyyy', "%d/%m/%Y"),
datetime.datetime.strptime('dd/mm/yyyy, "%d/%m/%Y")), #for crop_code_1

(datetime.datetime.strptime('dd/mm/yyyy ', "%d/%m/%Y"),
datetime.datetime.strptime('dd/mm/yyyy’, "%d/%m/%Y")), #for crop_code_2

, ...,

(datetime.datetime.strptime('dd/mm/yyyy ', "%d/%m/%Y"),
datetime.datetime.strptime('dd/mm/yyyy’, "%d/%m/%Y")), #for crop_code_n]

2.6.2.3 Compliancy calculation

if cnt = “cz” or cnt = “it” or cnt = “nl” or cnt = “ro” or cnt = “sp”

 # iteration over the elements of grass_prod (parcels)

 for parcel in grass_prod: # grass_prod is an NxM array containing the N lines
of the dbf of the output shapefile <outputShapeFile> for the selected country

 t_range=cnt_time_range [cnt_crop_id_dict[get crop code (parcel)] #t_range is
the start and end dates of the mandatory mowing period for the parcel and crop

 t_start = t_range[0]

 t_end = t_range[1]

cond1: if the parcel has not mowing (mow_n attribute of the <outputShapeFile>= 0) and has not
been processed (proc attribute of the <outputShapeFile>= 0) then compliancy = 0 (Not assessed)
 if parcel[mow_n] = 0 and parcel[proc] = 0:

 compliancy=0

Ref Sen4CAP_DDF-ATBD-L4B_v1.3

Issue Page Date

1.3 38 26/03/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

cond2: if the parcel has not mowing (mow_n attribute of the <outputShapeFile>= 0) and has
been processed (proc attribute of the <outputShapeFile>= 0) then compliancy = 2 (Assessed and
not compliant because no mowing)
 if parcel[mow_n] = 0 and parcel[proc] = 1:

 compliancy =2

cond3: if the parcel has n mowing (mow_n attribute of the <outputShapeFile> > 0 (values from
1 to 4) and, at least, a mowing intersects the mandatory mowing period for the parcel and crop,
then compliancy=1 (Assessed and compliant) otherwise compliancy=2 (Assessed and not
compliant because no mowing)
 if parcel[mow_n] > 0

 mowing_in_interval = False

 for mow_event in range(1, mow_n):

if (parcel[m<mow_event>_start] >= t_start and parcel[m<mow_event>_start] <=
t_end) or parcel[m<mow_event>_end] >= t_start and parcel[m<mow_event>_end] <=
t_end):

 mowing_in_interval = True

 continue

 if mowing_in_interval:

 compliancy = 1

 else:

 compliancy = 2

 compliancy parcel[compliancy] # the compliancy value is written back in the
dbf file

else:

iteration over the elements of grass_prod (parcels)
 for parcel in grass_prod: # grass_prod is an NxM array containing the N lines

of the dbf of the output shapefile <outputShapeFile> for the selected country

 t_range=cnt_time_range [cnt_crop_id_dict[get crop code (parcel)] #t_range is the
start and end dates of the mandatory mowing period for the parcel and crop

 t_start = t_range[0]

 t_end = t_range[1]

	Table of contents
	List of figures
	List of tables
	List of acronyms
	1. Logical model
	1.1 Overview of the system

	2. L4B system components
	2.1 External interface of the L4B processing system
	2.1.1 Input data and parameters
	2.1.2 Output data and parameters

	2.2 GSAA input shapefile preparation
	2.3 SAR data processing
	2.3.1 SAR feature extraction
	2.3.2 SAR mowing detection
	2.3.3 Pseudo-Code
	2.3.3.1 Library Import
	2.3.3.2 Input parameters
	2.3.3.3 Data, Orbits and paths (to be extracted from last preprocessed data)
	2.3.3.4 File list generation and parameter extraction
	2.3.3.5 Extraction of dates and times
	2.3.3.6 Data selection based on dates
	2.3.3.7 Removal of corrupted files
	2.3.3.8 Generation of segmentation map from input shapefiles and extent extraction
	2.3.3.9 Generation of the GDAL Virtual Raster of the SAR data on the shapefile projection
	2.3.3.10 Extraction of the gdal virtual raster extent
	2.3.3.11 Extraction of the intersection between gdal virtual raster extent and shapefile extent
	2.3.3.12 Generation of the GDAL Virtual Raster of the SAR data on the shapefile projection and on the intersection extent
	2.3.3.13 Generation of segmentation map from input shapefiles
	2.3.3.14 Load Data
	2.3.3.15 Morphological erosion of segments
	2.3.3.16 Extraction of segment id and their parameters
	2.3.3.17 Extraction data parameters from gdal virtual raster
	2.3.3.18 Feature Extraction based on segmentation
	2.3.3.19 Extraction of the temporal series
	2.3.3.20 Make dictionary of the segments and its inversion
	2.3.3.21 Detection: Constant false alarm rate (CFAR) initialization
	2.3.3.22 Detection: fitting and detection on VV temporal trends of the coherences
	2.3.3.23 Detection: fitting and detection on VH temporal trends of the coherences
	2.3.3.24 Normalization of the confidence index for VV and VH detections
	2.3.3.25 Calculate fused confidences exploiting VV and VH detections
	2.3.3.26 Write detection shape file results
	2.3.3.27 Calculate compliancy

	2.4 Optical data processing
	2.4.1 Vegetation Indexes feature extraction
	2.4.2 Vegetation Indexes mowing detection
	2.4.2.1 Model calculation (not available in the current version of processor)
	2.4.2.2 Grassland mowing detection

	2.4.3 Pseudo-Code
	2.4.3.1 Library Import
	2.4.3.2 Tiles to be processed
	2.4.3.3 Input Parameters
	2.4.3.4 Data and paths
	2.4.3.5 File list generation and parameter extraction
	2.4.3.6 Data selection based on dates and vegetation indexes
	2.4.3.7 Removal of corrupted files
	2.4.3.8 Generation of segmentation map from input shapefiles and extent extraction
	2.4.3.9 Generation of the GDAL Virtual Raster of the SAR data on the shapefile projection
	2.4.3.10 Extraction of the gdal virtual raster extent
	2.4.3.11 Extraction of the intersection between gdal virtual raster extent and shapefile extent
	2.4.3.12 Generation of the GDAL Virtual Raster of the SAR data on the shapefile projection and on the intersection extent
	2.4.3.13 Generation of raster ROI mask and segmentation map from input shapefiles
	2.4.3.14 Load data
	2.4.3.15 Morphological erosion of segments
	2.4.3.16 Extraction of segment id and their parameters
	2.4.3.17 Extraction data parameters from gdal virtual raster
	2.4.3.18 Feature Extraction based on segmentation
	2.4.3.19 Extraction of the temporal series
	2.4.3.20 Make dictionary of the segments and its inversion
	2.4.3.21 Model extraction
	2.4.3.22 Initialization
	2.4.3.23 Detection
	2.4.3.24 Remove multiple detections
	2.4.3.25 Confidence normalization
	2.4.3.26 Write detection shape file results
	2.4.3.27 Calculate compliancy

	2.5 Fusion of detections
	2.5.1 S-1/S-2 mowing detections merge

	2.6 Compliancy assessment
	2.6.1 Compliancy criteria for each country
	2.6.2 Pseudo-code
	2.6.2.1 Library Import
	2.6.2.2 Parameters
	2.6.2.3 Compliancy calculation

