Welcome to the 13th webinar

The webinar will last around 1h

The slides will be available on the Sen4CAP website in the coming 48 hrs (http://esa-sen4cap.org/)

Presenters:
Sophie Bontemps, Diane Heymans & Maxime Troiani from UCLouvain
Cosmin Udriou & Laurentiu Nicola from CS Romania

Members of the consortium available to answer your questions
Webinar outline

• Sen4CAP overview

• New use cases and processors
 o Parcels heterogeneity
 o Bare soil detection
 o Change of land category

• System evolution
 o New version 4.0

• Conclusions and next steps
Webinar outline

• **Sen4CAP overview**
• **New use cases and processors**
 o Parcels heterogeneity
 o Bare soil detection
 o Change of land category
• **System evolution**
 o New version 4.0
• **Conclusions and next steps**
Sen4CAP system

Guidance by DG-Agri, JRC, DG-Grow.

User group: 6+1 Paying Agencies

Funded by European Space Agency

EO Experts

User group:

EO Experts

Funded by European Space Agency

User group:

EO Experts

Funded by European Space Agency

User group:

EO Experts

Funded by European Space Agency

User group:

EO Experts

Funded by European Space Agency

User group:

EO Experts

Funded by European Space Agency

User group:

EO Experts

Funded by European Space Agency

User group:

EO Experts

From an ESA project ...
…to an open source systemuptaken by the CAP community
Markers and products assessed through selected use cases but available for many other applications

Markers DB

- S2 reflectance and VIs
- S2 biophysical indicators
- S1 amplitude
- S1 coherence

Crop type map

Grassland mowing product

Agri. Practices monitoring product

Subsidy applications

New schemes

API interface

Markers DB
Sen4CAP
Open-source system

- Sentinel-1 & -2
- Automated and modular
- For NRT or off-line production
- Demonstrated at national scale
- Portable on all DIAS-es or operated locally
- User-friendly & API interfaces
- Dockerization for main components

Version 4.0 delivered today

ESA UNCLASSIFIED - For Official Use
Webinar outline

• Sen4CAP overview
• **New use cases and processors**
 o Parcels heterogeneity
 o Bare soil detection
 o Change of land category
• System evolution
 o New version 4.0
• Conclusions and next steps
New uses cases

Sub-parcel heterogeneity
marker(s)

Bare soil markers

Change of cover
from year to year

- Permanent Grassland
- Arable Land
- Permanent Crop

New Optical & SAR variables
- all year round

Per pixel analysis

Markers DB

Image credit: MILENOV Pavel et al., 2021, JRC
R&D with 7 pilot countries (8 Paying Agencies), sharing calibration and validation data

- 1 or 2 S2 tiles
- 1 or 2 years (2020-2021)
- All Sentinel-1 and Sentinel-2 preprocessed
Heterogeneity Workflow

Input data preparation – period p

- L2A – 10m B,C,D
- L3B – 10m NDVI

Input data preparation

- Lpis imported (.tif)

Clustering (MiniBatchKmeans)

Remove isolated pixel

Raster of Clusters

Raster of Connectivity

Period S1 result

Spatial smoothing

- Number & size of clusters?
- Difference of NDVI between clusters?
- Are the clusters compact?
Heterogeneity Workflow

Input data preparation – period p
- L2A – 10m
- L2B – 10m
- B2, B3, B4, B8
- NDVI

Input data preparation – period p
- Lpis imported (.tif)

Clustering (MiniBatchKmeans) → Remove isolated pixel → Raster of Clusters

Extraction and markers at parcel level

Decision results

Period P S1 result

Period P S2 result

Parcel-level analysis
Heterogeneity – Markers S2 & S1

<table>
<thead>
<tr>
<th>Marker</th>
<th>Description</th>
<th>Possible Value at each period P</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>More than one big cluster (>(\text{PerHetero}) % of the parcel) with S2</td>
<td>1 / 0 / NA</td>
</tr>
<tr>
<td>M2</td>
<td>At least 2 clusters with more than (\text{NPixClS2}) & M1 =1</td>
<td>1 / 0 / NA</td>
</tr>
<tr>
<td>M3</td>
<td>DistNDVI > (\text{ThrdNDVIdist})</td>
<td>1 / 0 / NA</td>
</tr>
<tr>
<td>M4</td>
<td>Compact S2 > (\text{ThrdCompactS2})</td>
<td>1 / 0 / NA</td>
</tr>
</tbody>
</table>

S2 Markers

Parameters:
- \(\text{PerHetero}\) = Percentage of the biggest cluster in the parcel (default = 90%)
- \(\text{NPixClS2}\) = Number of S2 pixel needed to determine if a cluster can be big enough (default = 20)
- \(\text{NPixClS1}\) = Number of S1 pixel needed to determine if a cluster can be big enough
- \(\text{ThrdNDVIdist}\) = difference of NDVI needed for heterogeneity
- \(\text{ThrdCompactS2}\) = Threshold of compactness (varies according to the radius \(C\) - see connectivity raster)

(Saxony – radius = 3, thrdcompacts2 = 3 VS Greece – radius = 2, thrdcompacts2 = 1.7)
Heterogeneity – decision period

- **Period P**
 - Raster of Clusters
 - Raster of Connectivity
 - Extraction + markers
 - Period P S2 result

- **Period PM**
 - decision results

- **Period PM**
 - decision results

- **Period PM**
 - decision results

Resampled Sentinel2 images – 10 days
Resampled Sentinel1 images – 7 days

P = 30 days (min of 20/21 days)
PM = 3 * P

13rd Sen4CAP Webinar, 9 April 2024
Heterogeneity – C_INDEX decision

STRONG: All (3) periods with all markers = 1

MODERATE: At least 1 period with all markers = 1

WEAK: One marker missing each period

POOR: Half of the markers = 1

P_Hete_L = Last confirmed period with best detection

<table>
<thead>
<tr>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>M4</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>P4</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>P5</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\[P_{Hete_L} = 1 & C_INDEX = \text{MODERATE} \]

\[P_{Hete_L} = 2 & C_INDEX = \text{STRONG} \]

\[P_{Hete_L} = 2 & C_INDEX = \text{STRONG} \]

S1 as support for S2 detection & when not available
Heterogeneity – C_INDEX decision

STRONG: All periods with all markers = 1

MODERATE: At least 1 period with all markers = 1

WEAK: One marker missing each period

POOR: Half of the markers = 1

Saxony Results: 27,5% with a detection

→ POOR: 71%
→ WEAK: 27%
→ MODERATE: 1%
→ STRONG: 1%

Greece Results: 8,5% with a detection

→ POOR: 68,5%
→ WEAK: 29,5%
→ MODERATE: 1%
→ STRONG: 1%
Heterogeneity – Example in Greece

Last confirmed detection – p6
Detection – p7
Detection – p8
No Compacity – p9

STRONG detection with S2

Id = 626

NDVI

ESA UNCLASSIFIED - For Official Use

13th Sen4CAP Webinar, 9 April 2024
Heterogeneity – Example in Greece

Last confirmed detection – p6
Detection – p7
Detection – p8
No Compacity – p9

S2

S1

STRONG detection

Id = 626
Bare Soil: Classification

Input data preparation
- S2 time series
- L2A bands, L3B and variables (MBD1)

Bare Soil Classification

Random Forest model
- (S2)

BS detection
- S2 results

Input data preparation
- S2 time series
- L2A bands, L3B and variables (MBD1)

Bare Soil Classification

Random Forest model
- (S2)

BS detection
- S2 results

BS detection
- S2 results

BS detection
- S2 results

BS detection
- S2 results
For each parcels and at each date during the period of training

→ **Looks if NDVI, NDTI, BSI, NDMI < BS_threshold**

 ✓ The date and parcel goes to the calibration dataset as bare soil

→ **Looks if NDVI, NDTI, BSI, NDMI > NBS_threshold**

 ✓ The date and parcel goes to the calibration dataset as vegetation
Bare Soil Classification S1 & S2

Input data preparation

- **S2 time series**
 - L2A bands, L3B and variables (MBD1)

- **S1 time series**
 - BCK, VV, VH, Ratio & COHE (resampled weekly – MDB L4A)

Bare Soil Classification

- Thresholds on S2 variables (NDVI, NDTI, NDMI, BSI)
- BS calibration data S2 observations
- NBS calibration data S2 observations
- BS calibration data S1 observations
- NBS calibration data S1 observations

Random Forest model (S2)

- BS detection S2 results

Random Forest model (S1)

- BS detection S1 results

Calibration dataset

- Vegetation

ESR INR A S A - For Official Use

13th Sen4CAP Webinar, 9 April 2024
Bare Soil: Complete workflow

Input data preparation

- **S2 time series**
 - L2A bands, L3B and variables (MBD1)

- **S1 time series**
 - BCK, VV, VH, Ratio & COHE (resampled weekly – MDB L4A)

Bare Soil Classification

- **Thresholds on S2 variables** (NDVI, NDTI, NDMI, BSI)
- **BS calibration data**
 - S2 observations
- **NBS calibration data**
 - S2 observations
- **BS calibration data**
 - S1 observations
- **NBS calibration data**
 - S1 observations

Random Forest model (S2)

- **BS detection**
- **S2 results**

Random Forest model (S1)

- **BS detection**
- **S1 results**

Times series analysis & markers generation

- **BS general results**
- **Time series analysis**

BS detection: BS results
Time Series Analysis & Markers

Example

Conf: Strong

Conf: Doubtful
Time Series Analysis & Markers

<table>
<thead>
<tr>
<th>Description</th>
<th>Values possible</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>First observation of BS with conf > thr_{bs} → Allow to set the START_BS_S2</td>
</tr>
<tr>
<td>M2</td>
<td>Observation of BS in conf > thr_{bs} → +1 → 1st confirmation → LookEnd = True (look for the end of the BS period) → Allow to see number of strong BS in the BS period</td>
</tr>
<tr>
<td>M3</td>
<td>Observation of BS in conf > thr_{bs} → +2, BS in conf < thr_{bs} → +1 & NBS in any conf → -1 → Number of strong observation – number of noise in the BS period</td>
</tr>
<tr>
<td>M4</td>
<td>Observation of NBS with conf > thr_{nbs} → Allow to set the END_BS_S2</td>
</tr>
<tr>
<td>M5</td>
<td>Observation of NBS in conf > thr_{nbs} → +1 → Allow to see number of strong NBS in the Plong period (2 months) after the BS period</td>
</tr>
<tr>
<td>M6</td>
<td>Observation of NBS in conf > thr_{nbs} → +2, NBS in conf < thr_{nbs} → +1 & BS in any conf → -1 → Number of strong observation – number of noise</td>
</tr>
</tbody>
</table>

Parameters:

- Thr_{bs}: Threshold of BS that indicate the minimum confidence level in the BS prediction to be consider as a strong detection.
- Thr_{nbs}: Threshold of NBS that indicate the minimum confidence level in the NBS prediction to be consider as a strong detection.
- $Pshort$: 1. As the maximum number of days after after the START_BS where if the END_BS is not found, the ENDS_BS is equal to the START_BS. 2. to see if there a strong detection of BS after the set of the ENDS_BS. When it happens two times, the END_BS is restarted.
- $Plong$: Long period that is used as the duration to look for vegetation (NBS) after the END_BS. It has an impact on the M5 and M6.
Confidence level in the detection

Strong: $M_2 \geq 3$, $M_3 \geq 2$ and $M_6 \geq 0$

Good: $M_2 > 0$, $M_3 \geq 0$ and $M_5 > 0$

Medium: $M_2 > 0$ and $M_3 \geq 0$

Poor: $M_2 \geq 0$ and $M_3 < 0$

Doubtful: only $M_1 = 1$ (only one strong BS)
Results & use of S1 as confirmation of S2

Czechia:
52,5% of the parcels with a detected bare soil (M1_S2)

<table>
<thead>
<tr>
<th>Confidence</th>
<th>S2</th>
<th>With S1 conf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doubtful</td>
<td>19.07%</td>
<td>1.78%</td>
</tr>
<tr>
<td>Poor</td>
<td>6.34%</td>
<td>1.59%</td>
</tr>
<tr>
<td>Medium</td>
<td>18.49%</td>
<td>4.58%</td>
</tr>
<tr>
<td>Good</td>
<td>25.92%</td>
<td>9.28%</td>
</tr>
<tr>
<td>Strong</td>
<td>30.17%</td>
<td>18.66%</td>
</tr>
</tbody>
</table>

Sweden:
32,7% of the parcels with a detected bare soil (M1_S2)

<table>
<thead>
<tr>
<th>Confidence</th>
<th>S2</th>
<th>With S1 conf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doubtful</td>
<td>32.66%</td>
<td>3.25%</td>
</tr>
<tr>
<td>Poor</td>
<td>6.52%</td>
<td>0.75%</td>
</tr>
<tr>
<td>Medium</td>
<td>13.07%</td>
<td>1.32%</td>
</tr>
<tr>
<td>Good</td>
<td>12.50%</td>
<td>1.88%</td>
</tr>
<tr>
<td>Strong</td>
<td>35.24%</td>
<td>17.62%</td>
</tr>
</tbody>
</table>

→ 36% of the parcels with a detection with a S1 confirmation

→ 25% of the parcels with a detection with a S1 confirmation
Bare Soil – Example in Sweden

<table>
<thead>
<tr>
<th>NewID</th>
<th>M1_S1</th>
<th>M2_S1</th>
<th>M3_S1</th>
<th>M4_S1</th>
<th>M5_S1</th>
<th>M6_S1</th>
<th>START1_BS_S1</th>
<th>END1_BS_S1</th>
<th>Conf1_S1</th>
<th>Nbr_S1</th>
<th>Look_nextS1</th>
<th>START2_BS_S1</th>
<th>END2_BS_S1</th>
<th>Conf2_S1</th>
<th>Nbr2S1</th>
</tr>
</thead>
<tbody>
<tr>
<td>546</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>12-02-21</td>
<td>13-05-21</td>
<td>Strong+ S1</td>
<td>9</td>
<td>VRAI</td>
<td>31-08-21</td>
<td>05-09-21</td>
<td>Good</td>
<td>2</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M1_S1</th>
<th>M2_S1</th>
<th>M3_S1</th>
<th>M4_S1</th>
<th>M5_S1</th>
<th>M6_S1</th>
<th>START1_BS_S1</th>
<th>Conf1_STARTS1</th>
<th>END1_BS_S1</th>
<th>Nbr_S1</th>
<th>Look_nextS1</th>
<th>START2_BS_S1</th>
<th>END2_BS_S1</th>
<th>Conf2_STARTS1</th>
<th>Nbr2S1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>-3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>08-02-21</td>
<td>01-03-21</td>
<td>Strong</td>
<td>4</td>
<td>VRAI</td>
<td>26-04-21</td>
<td>26-04-21</td>
<td>Doubtful</td>
<td>4</td>
</tr>
</tbody>
</table>
Bare Soil – Example in Belgium

2021-2022 Smoothed Time Series

2021 main crop = Winter barley
2022 main crop = Sugar beet

ID: 100

NDVI smoothed
NDVI mean & std

LAI smoothed
LAI mean & std

Harvest
CoverCrop
BareSoil S2
BareSoil S1
Change of Agricultural Category

Y0

Perennial Crop

Y1

Arable Land

Y2

Y3

Permanent Grassland
Change of Agricultural Category - Workflow

Input data preparation

Markers generation
- P1 (Sep-Dec)
 - L4E - BS Calibration + Model
 - L4E - BS detection
 - Stability & Consecutiveness Marker
 - Vegetation growth marker

Markers generation
- P2 (Jan-June)
 - L4E - BS detection
 - Stability & Consecutiveness Marker
 - Vegetation growth marker

L4A - Classification

Consolidation

LPIS + crop code LUT (Y0)

LPIS + crop code LUT (Y1)

Change of Agricultural Category

P1 analysis
- Change P1 results

P2 analysis
- Change P2 results

Files/data
- Permanent Crop
- Permanent Grassland
- Arable Land

Algorithm
Change of Agricultural Category – LPIS/GSAA standardization

Luxembourg

<table>
<thead>
<tr>
<th>Year</th>
<th>Full LPIS</th>
<th>Reduced Size LPIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>60,000</td>
<td>40,000</td>
</tr>
<tr>
<td>2021</td>
<td>50,000</td>
<td>50,000</td>
</tr>
<tr>
<td>2022</td>
<td>55,000</td>
<td>45,000</td>
</tr>
</tbody>
</table>

Saxony

2020 loss = 12.08%
2021 loss = 13.34%
2022 loss = 10.25%

Czechia

2020 loss = 18.4%
2021 loss = 16.12%
2022 loss = 15.26%

2020 loss = 12.55%
2021 loss = 13.71%
2022 loss = 10.60%
Change of Agricultural Category – Vegetation Growth

Wallonia (Belgium)

ESA UNCLASSIFIED - For Official Use
Change of Agricultural Category – Bare soil

Czechia

Period 1

NDVI time serie, parcel 836

RF BS detection
BS period prediction (conf = Strong)
Change of Agricultural Category – Vegetation stability & outlier consecutiveness

From grasslands to maize

Luxembourg
Change of Agricultural Category – Markers analysis

Change score computation: Tresholds values Period 1

<table>
<thead>
<tr>
<th>Marker</th>
<th>Tresholds</th>
<th>Change score value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grassland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ratio_stability</td>
<td>TTdaysS2 > 0</td>
<td>+2</td>
</tr>
<tr>
<td>Consec_stability</td>
<td>TTdaysS2 > 0</td>
<td>+1.5</td>
</tr>
<tr>
<td>Permanent crop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AreaVeg</td>
<td>AreaVeg > 50</td>
<td>+1</td>
</tr>
<tr>
<td>Ratio_stability</td>
<td>Ratio_stability > 20</td>
<td>+1</td>
</tr>
<tr>
<td>Annual crop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AreaVeg</td>
<td>AreaVeg > 50</td>
<td>+1.5</td>
</tr>
</tbody>
</table>

Change score computation: Tresholds values Period 2

<table>
<thead>
<tr>
<th>Marker</th>
<th>Tresholds</th>
<th>Change score value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grassland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ratio_stability</td>
<td>TTdaysS2 > 0</td>
<td>+2</td>
</tr>
<tr>
<td>Consec_stability</td>
<td>TTdaysS2 > 0</td>
<td>+1.5</td>
</tr>
<tr>
<td>Permanent crop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AreaVeg</td>
<td>AreaVeg > 20</td>
<td>+1</td>
</tr>
<tr>
<td>Ratio_stability</td>
<td>Ratio_stability > 20</td>
<td>+1</td>
</tr>
<tr>
<td>Annual crop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AreaVeg</td>
<td>AreaVeg > 50</td>
<td>+1.5</td>
</tr>
</tbody>
</table>

Agricultural category change prediction

- X >Change score treshold P1
- X >Change score treshold P2
Change of Agricultural Category – interpretation grid

- **Permanent grassland**
 - For TEMP & PERM grassland: assuming grassland is ploughed
 - Ploughing date will depend on the plantation date of crops
 - If plantation in autumn:
 - Presence of bare soil in P1
 - Low veg. growing (young trees, but herb. cover)
 - If plantation in spring:
 - Presence of bare soil in P2 (Feb-Mar)
 - Low veg. growing (young trees, but herb. cover)

- **Temporary grassland**
 - For TEMP & PERM grassland:
 - Base soil in P1 (crop sowing)
 - Vegetation growing + conspicuousness in P1 and/or P2

- **Arable land**
 - If summer crop:
 - P1: bare soil (crop harvest, grass sowing)
 - P2: bare soil, veg. conspicuousness
 - If winter crop:
 - Harvest & grass sowing before P1
 - Absence of bare soil both in P1 and P2

- **Annual cropland**

- **Perennial cropland**
Change of Agricultural Category – interpretation grid

Key: absence of harvest
- If summer crop is:
 - P1: Bare soil (crop harvested before P1)
 - P2: Bare soil, veg. growing & consecutive
- If winter crop is:
 - Harvested before P1
 - Absence of bare soil both in P1 and P2

For TEMP & PERM grassland:
- Bare soil in P1 (crop harvested)
- Vegetation growing and consecutive in P1 and/or P2

For TEMP & PERM grassland: assuming grassland is ploughed
- Presence of bare soil in P1
- Low veg. growing (young trees, but herb. cover)
- Presence of bare soil in P2 (Feb-Mar)
- Low veg. growing (young trees, but herb. cover)

Annual crop is harvested, then permanent crop in autumn or spring:
- Bare soil in P1 or P2
- If plantation in autumn: low veg. growing (young trees, but herb. cover)
- If plantation in spring: presence of bare soil + low veg. growing (young trees, but herb. cover)
Webinar outline

• Sen4CAP overview
• New use cases and processors
 - Parcels heterogeneity
 - Bare soil detection
 - Change of land category
• System evolution
 - New version 4.0
• Conclusions and next steps
Sen4CAP versions

Version 1.0 release candidate
- Open-source
- Possibility for the PAs to access a test machine with the system

Version 1.1, 1.2, 1.3
- Markers database
- Tillage processor
- Dockerization
- ...

Version 2.0
- Web interface
- Products visualization
- Additions in MDB
- Secured services
- Dockerization
- ...

Version 3.0
- Support for MAJA 4.5.4

Version 3.1
- Updates for the Creodias datasources
- Updates for USGS datasources
- New markers in MDB1
- ...

Version 3.2
- Bare soil processor
- Change detection processor
- Heterogeneity processor
- Copernicus DAS data source
- ...

Version 4
- Markers database
- Tillage processor
- Dockerization
- ...

ESA UNCLASSIFIED - For Official Use
Version 4 new features

• **System evolution – New version 4.0**
 - New Postgis 16-3.4 version for new installations
 - New Copernicus Data Space Ecosystem (DAS), LSA and ASF data source
 - Removed the SciHub data source
 - Added Bare soil processor
 - Added Change detection processor
 - Added Heterogeneity processor
Version 4 new features

- **New Copernicus DAS data source**
 - New account needs to be created
 - Local root not supported yet
 - In the next future to support the access to EO data via S3 API
- **New LSA data source**
- **New ASF data source**
Version 4 new features

• **Bare soil processor**
 - **Inputs**:
 - MDB 1
 - MDBL4A_SAR_Main
 - Simple start/end dates selection

• **Heterogeneity processor**
 - **Inputs**:
 - L3B (NDVI only)
 - S1 weekly temporal resampled rasters
 - CropType processor is launched automatically inside
 - L2A with validity masks
• **Change detection processor**

 - **Inputs:**
 - MDB1
 - MDB L4A Optical Main
 - Bare soil products

 - Two sites are involved
 - Main site
 - Reference site

 - Start and end dates to be provided for both reference and main site
Webinar outline

• Sen4CAP overview

• New use cases and processors
 o Parcels heterogeneity
 o Bare soil detection
 o Change of land category

• System evolution
 o New version 4.0

• Conclusions and next steps
Next events

- **Forum** for your questions about the system 4.0 (and other)

- **ESA ITT** about « Sen4CAP cloudification »
SEN4CAP – future developments & opportunities

- While after several years of funding and contract changes, the SEN4CAP project comes to an end, ESA intends to initiate a long-term perspective with a dedicated Invitation to Tender

- Cloud readiness:
 - Transform SEN4CAP key functionality into modular cloud-based services and deploy e.g. in CDSE
 - Implementation to follow a cloud native approach and expose functionality via API and python libraries

- Open-Source readiness:
 - Ensure and prepare resulting source code for community contributions and engage with relevant initiatives

- Basic scientific enhancements:
 - Not the focus of this ITT, but selected critical CAP related enhancements to be implemented as well

INFORMATION-AS-A-SERVICE PATHFINDER: SEN4CAP

Evolve existing SEN4CAP algorithms to cloud-based on-demand services

- open-source consolidation
- ready for community maintenance & evolution
- modular functionality via client libraries and APIs
- datacube-centric refactoring

Call for Proposals, Q2

~ 400-600K, one pathfinder

interested? ➔ Patrick.griffith@esa.int
Next events

- **Forum** for your questions about the system 4.0 (and other)

- **ESA ITT** about « Sen4CAP cloudification »

- **Your questions ???**
Thank you for your attention and your contribution